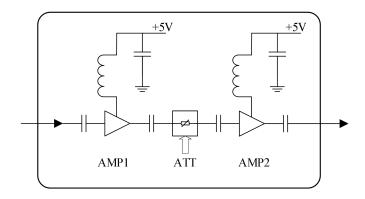


Programmable amplifier chip, 1~9GHz

Performance characteristics


Operating frequency: 1∼9GHz

Gain: 29dBNF: 1.9dB

P-1dB: 15dBm

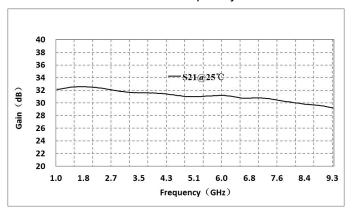
Outline Dimensions: 10x8x2.5mm

Principle diagram

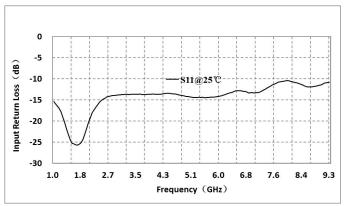
Product introduction

The GF030109Q2 programmable amplifier chip adopts GaAs technology, integrates an amplifier and a digital attenuator internally, with a frequency coverage range of 1-9 GHz. It can not only achieve gain amplification but also gain adjustment, with an attenuation range of 0~31.5dB and a step of 0.5dB. The numerical control attenuation chip adopts 0/+5V voltage control and is housed in a ceramic package, suitable for SMT.

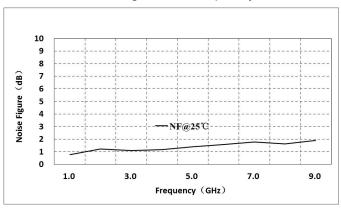
Absolute maximum ratings					
Parameter	Ratings				
VDD	+5.5V				
Input power	+20dBm				
Operating temperature	-55∼+85°C				
Storage temperature	-55∼+150°C				
Note: Exceeding any of these limits may cause permanent damage.					

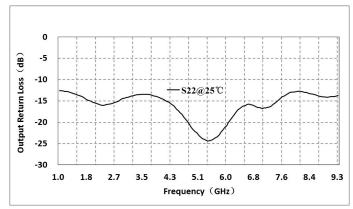


Programmable amplifier chip, $1\sim$ 9GHz


Electrical parameters(TA = +25°C, 50Ω system)								
Parameter	Min	Тур	Max	Unit				
Operating frequency	1		9	GHz				
Gain		29		dB				
Gain flatness		±1.5		dB				
Noise figure		1.9		dB				
Bit count		6		bit				
Attenuation step		0.5		dB				
Attenuation accuracy		±1		dB				
Input return loss		-15		dB				
Output return Loss		-15		dB				
P-1dB		15		dBm				
VDD current		90		mA				
VEE current		10		mA				

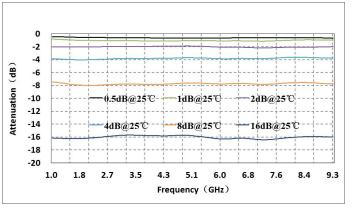
Main indicator testing curve


Gain VS. Frequency

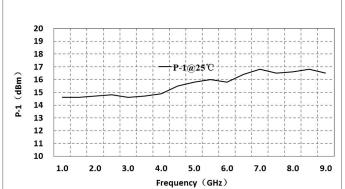

Input return loss VS. Frequency

Noise figure VS. Frequency

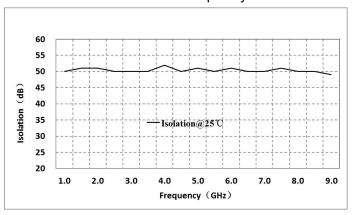
Output return loss VS. Frequency

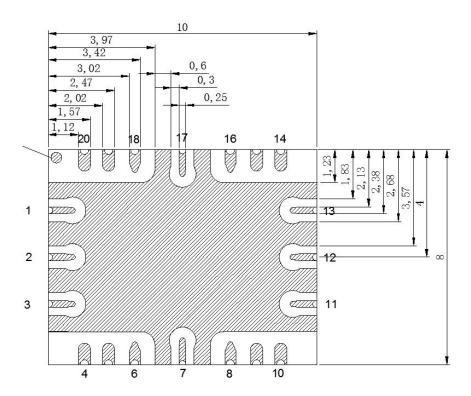


Add: 101 cecil street #14-10, tong eng building singapore 069533 Email: info@standardcircuit.com



Programmable amplifier chip, $1\sim$ 9GHz


Attenuation VS. Frequency


P-1 VS. Frequency

Isolation VS. Frequency

External structure

Programmable amplifier chip, 1~9GHz

Pin	Function	Description			
1、13	VDD	+5V power supply			
2	RFin	RF input, no need for blocking capacitors			
3~11	GND	Ground			
12	RFout	RF output, no need for blocking capacitors			
14	0.5dB attenuation	When A1=0, the 0.5dB attenuator is turned off,			
14	control bit A1	and when A1=5V, the 0.5dB attenuator is turned on			
15	1dB attenuation	When A2=0, the 1dB attenuator is turned off,			
15	control bit A2	and when A2=5V, the 1dB attenuator is turned on			
16	2dB attenuation	When A3=0, the 2dB attenuator is turned off,			
10	control bit A3	and when A3=5V, the 2dB attenuator is turned on			
17	4dB attenuation	When A4=0, the 4dB attenuator is turned off,			
17	control bit A4	and when A4=5V, the 4dB attenuator is turned on			
18	8dB attenuation	When A5=0, the 8dB attenuator is turned off,			
10	control bit A5	and when A5=5V, the 8dB attenuator is turned on			
19	16dB attenuation	When A6=0, the 16dB attenuator is turned off,			
	control bit A6	and when A6=5V, the 16dB attenuator is turned on			
20	VEE	This pin is a TTL level conversion circuit power port,			
	V = E	connected to a -5V power supply			

Truth table								
state	0.5dB	1dB	2dB	4dB	8dB	16dB		
	A1	A2	A3	A4	A5	A6		
reference	0	0	0	0	0	0		
0.5dB	1	0	0	0	0	0		
1dB	0	1	0	0	0	0		
2dB	0	0	1	0	0	0		
4dB	0	0	0	1	0	0		
8dB	0	0	0	0	1	0		
16dB	0	0	0	0	0	1		
"0"level range: $0\sim$ 0.8V; "1" Level range: $2.3\sim$ 5V								

Note:

- Unit mm
- It is recommended to connect a protective resistor of 1K ohms or more in series with the control input terminal;
- The device should be stored in a dry and nitrogen environment. When the device cannot be used up after being unpacked, it should be immediately stored in a drying oven or vacuum sealed to avoid absorbing moisture from the air;
- Devices are sensitive to static electricity, and attention should be paid to anti-static measures during storage, transportation, assembly, and use;

Add: 101 cecil street #14-10, tong eng building singapore 069533 Email: info@standardcircuit.com

Programmable amplifier chip, $1\sim$ 9GHz

- Please connect all grounding pins to RF ground;
- This product is suitable for reflow soldering installation process, with a maximum reflow soldering peak temperature of 260 ℃.

Add: 101 cecil street #14-10, tong eng building singapore 069533 Web: www.standardcircuit.com
Email: info@standardcircuit.com Tel: +65 89472019