
Performance characteristics GaN MMIC Power Amplifier Chip, 1.8-2.7 GHz

Frequency range:1.8~2.7GHz

Block Diagram

Psat: 44.5dBmPower gain: 26dBPower supply: 28V50ohm input/output

• Chip size:: 3.2mm×1.95mm×0.1mm

Product Introduction

GPA1.8-2.7-44 is a power amplifier chip manufactured using GaN HEMT technology. The working frequency band covers 1.8-2.7GHz, and under a supply voltage of 28V, it can provide a power gain of 26dB, with a saturated output power greater than 44.5dBm and a power added efficiency of 60%. The chip is grounded through the back through-hole. Mainly used in communication systems, high-power transceiver components, and other fields.

DC electrical specifications (TA=+25°C)

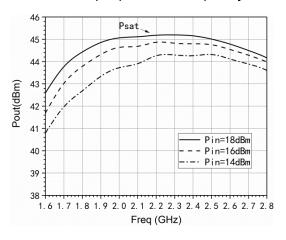
Parameter	Min	Тур	Max	Unit
Gate bias voltage		-2.7		V
Drain working voltage		28		V
Quiescent drain current		1300		mA
Dynamic drain current		1800		mA

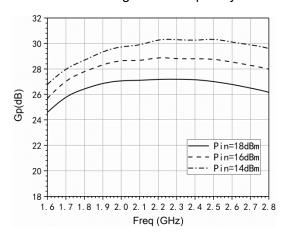
Microwave electrical specifications (TA=+25°C, Vd=+28V, Pulse width 300us, duty cycle 30%)

Parameter	Min	Тур	Max	Unit
Frequency range	1.8~2.7			GHz
Psat	44.5			dBm
PAE	58	62	64	%
Small signal gain		26		dB
Small signal gain flatness		±0.3		dB
Input/output return loss		-20/-10		dB

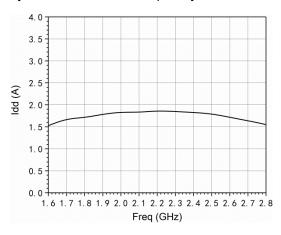
Absolute maximum ratings[1]

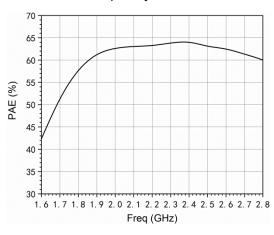
Parameter	Ratings	
Drain voltage	+30V	
Input power	30dBm	
Operating temperature	-55℃~+85℃	
Storage temperature	-65℃~+120℃	


[1] Exceeding any of these limits may cause permanent damage.

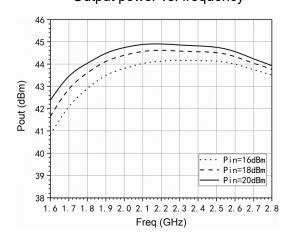

GaN MMIC Power Amplifier Chip, 1.8-2.7 GHz

Typical performance curves (Vd: +28V, Vg=-2.7V, pulse width 300us, duty cycle 30%)

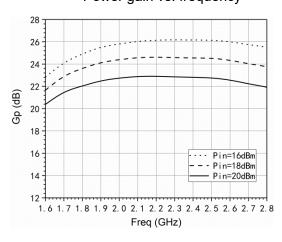

Output power vs. frequency


Power gain vs. frequency

Dynamic current vs. frequency (Pin=20dBm)

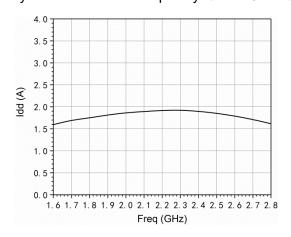


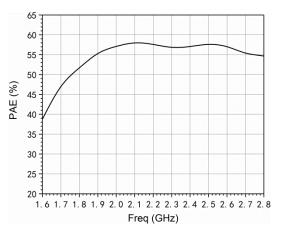
PAE vs. frequency (Pin=20dBm)

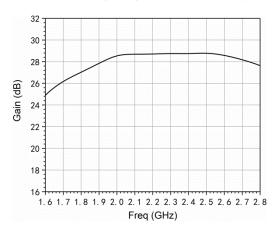


Typical performance curves (Vd=+28V, Vg=-2.7V, quiesecent Id=1300mA, CW)

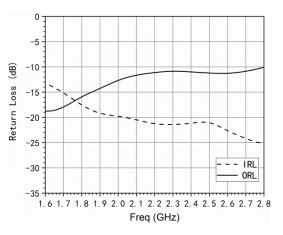
Output power vs. frequency

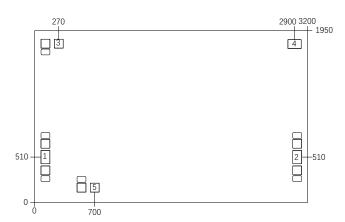

Power gain vs. frequency




Gan MMIC Power Amplifier Chip, 1.8-2.7 GHz Pin=20dBm) Power added efficiency VS. frequency (Pin=20dBm)

Dynamic current vs. frequency (Pin=20dBm)



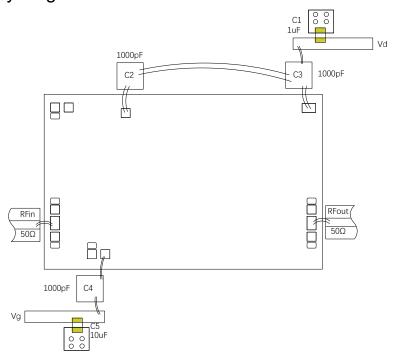

Small signal gain vs. frequency

Input/output return loss vs. frequency

Outline Dimensions

Notes:

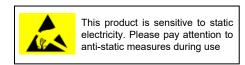
- 1. Unit: µm
- 2. Gold plating on bonding pads
- 3. Dimensional tolerance: ± 20 µ m



GaN MMIC Power Amplifier Chip, 1.8-2.7 GHz

Pad definition

Pad Number	Function	Description	Dimensions
1	IN	RF input, external 50 ohm system, no need for external blocking capacitor	100×100um
2	OUT	RF output, external 50 ohm system, no need for external blocking capacitor	100×100um
3、4	Vd	The chip drain power supply terminal has a supply voltage of 28V	100×100um
5	Vg	Gate power supply, voltage -2.7V, quiescent current 1400mA	100×100um


Suggested assembly diagram

Note: To ensure more stable performance of the amplifier, it is recommended to weld ceramic capacitors with the recommended capacitance values in the above assembly diagram at the feeding end for filtering. The number of filtering capacitors can also be increased or different capacitance values can be combined according to actual needs. During pulse operation, no ceramic capacitor is added to the drain Vd.

Note:

- 1. Please assemble and use in a purified environment, store in anti-static containers, and keep dry
- 2. The back of the chip is grounded with gold backing. Please ensure that the back is in full contact with the ground and well grounded during use
- 3. Use gold tin solder with a ratio of 80/20 to sinter, with a sintering temperature not exceeding 300 °C and a sintering time as short as possible, not exceeding 20 seconds
- 4. This product is an electrostatic sensitive device. Please pay attention to anti-static measures during storage and use
- 5. Do not attempt to clean the surface of the chip using dry or wet chemical methods
- 6. If you have any questions, please contact the supplier

