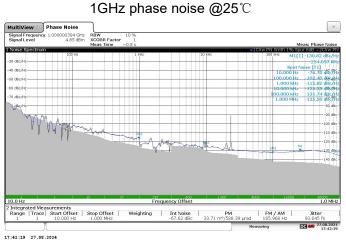

Mini universal frequency source E, 0.1~13.6GHz

Performance characteristics

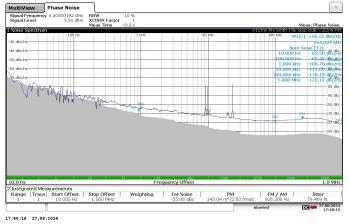
- Operating frequency: 0.1~13.6GHz
- Frequency step: 1kHz~100MHz
- Output power: ≥0dBm
- Supply voltage: +3.3V
- Control mode: SPI
- Outline Dimensions: 15x12x3.5mm
- Packaging form: ceramic packaging
- Working temperature: -40°C~+85°C

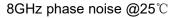
Principle diagram

Product Introduction


GF035-001T136A is a mini universal frequency source with an output frequency range of 0.1-13.6GHz. It can achieve a minimum frequency hopping step of 1kHz and a typical phase noise value of -100dBc/Hz@1k@13GHz, -102dBc/Hz@10k@13GHz, output power ≥0dBm. It is housed in a ceramic package, suitable for SMT.

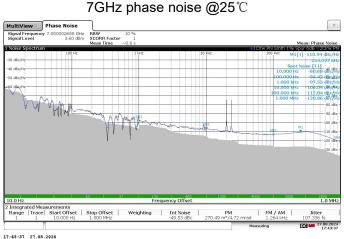
Electrical parameters(TA = +25°C, 50 Ω system)										
Parameter	Min	Тур	Max	Unit						
Operating frequency	0.1	7	13.6	GHz						
Output power		≥0		dBm						
Frequency step	0.001	1	100	MHz						
Spurious		≥50		dBc						
Phase noise		-97		dBc/Hz@1K						
		-106		dBc/Hz@10K						
		-112		dBc/Hz@100K						
		-120		dBc/Hz@1M						
Current		≤260		mA						

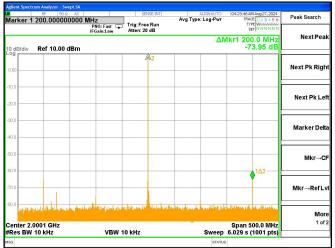



Mini universal frequency source E, 0.1~13.6GHz

Main indicator testing curve

5GHz phase noise @25°C

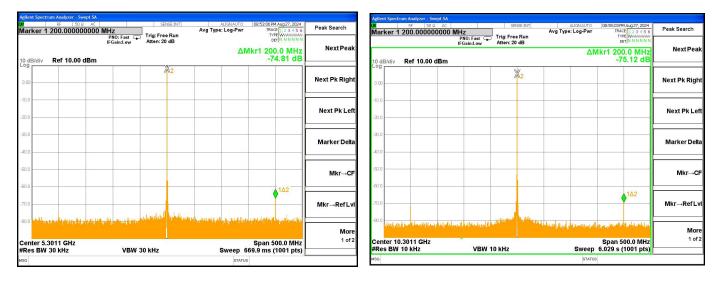



5.3011GHz spurious @25°C

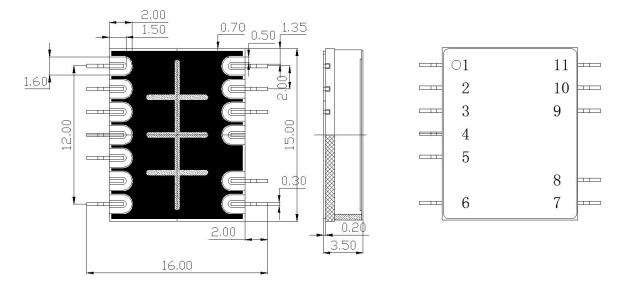
3GHz phase noise @25°C Thegrated Measurements
Range | Trace | Start Offset | Stop Offset | Weighting | Int Noise
54.06 dBr
-54.06 dBr PM FM / AM | mº/2.80 mrad 602.961 Hz

17:41:27 27.08.2024

2.0001GHz spurious @25°C



10.3011GHz spurious @25°C


Add: 101 cecil street #14-10, tong eng building singapore 069533 Email: info@standardcircuit.com

Mini universal frequency source E, 0.1 \sim 13.6GHz

External structure

Pin	Function	Description				
1	LE	Enable				
2	DATA	data				
3	CLK	Clock				
4	LD	Lock indication: Locked at high level, unlocked at low level				
5	REF	100M reference input				
6	GND	Ground				
7	+3.3V	+3.3V power supply				
8	RFout	RF output				
9	GND	Ground				
10	NC	Not connected				
11	NC	Not connected				

Mini universal frequency source E, 0.1~13.6GHz

Control requirements

The output module frequency is controlled through SPI serial port, and the control method is as follows:

The total length of SPI serial port data DI is 64 bits (8 bytes), as shown in the table.

Definition of DI for receiving data										
_	D7	D6	D5	D4	D3	D2	D1	D0		
The 1st byte	LSB									
•	•									
The 4th byte	MSB									

Remark:

- The order of receiving data is: first receive the first byte, then the second byte, until the fourth byte. In each byte, the high bits come first and the low bits come last;
- The frequency step is 1kHz.

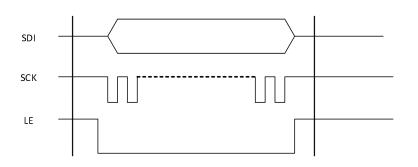


Fig. SPI serial port timing diagram

Instructions:

- 1) LE is the enable signal, when LE is at a low level, the data and clock signals are valid.
- 2) SCK is a clock signal that can support a maximum clock frequency of 10MHz, LVTTL level.
- 3) SDI is serial input data, valid when SCK rises, LVTTL level.

Remark

- Unit: mm;
- Frequency hopping time does not include communication time;
- The larger the step, the faster the hopping time, and the better the spurious;
- The power supply of the product needs to be filtered to prevent interference from power ripple on sensitive components;
- The device should be stored in a dry and nitrogen environment. When the device cannot be used up after being unpacked, it should be immediately stored in a drying oven or vacuum sealed to avoid

Mini universal frequency source E, 0.1~13.6GHz

absorbing moisture from the air;

- Devices are sensitive to static electricity, and attention should be paid to anti-static measures during storage, transportation, assembly, and use;
- This product is suitable for reflow soldering installation process, with a maximum reflow soldering peak temperature of 210 ℃.