

Performance Characteristics

♦ Frequency range: DC~60GHz

♦ Insertion loss: 3dB (Typical values)

♦ Attenuation: 0dB~15dB

♦ On/Off state Standing Wave: 1.5/2.5 (Typical values)

♦ Control voltage: V1=-1V~0V; V2=-1V~0V

♦ Chip size: 1.40 mmx0.70 mmx0.07 mm

Product Introduction

Broadband Voltage Variable attenuator chip, with a frequency range of DC \sim 60GHz, a typical insertion loss of 3.0 dB, and an attenuation range of 0dB \sim 15dB.

Electrical Performance Table(TA=+25°c)

Electrical Performance Table (1A +25 C)						
Parameter	Min	Тур	Max	Unit		
Frequency Range	DC		60	GHz		
Insertion Loss	1.2	3.0	3.0	dB		
Attenuation	0		15	dB		
On State Input Standing Wave		1.5				
On State Output Standing Wave		1.5		*		
Attenuated Input Standing Wave		2.5		*		
Attenuation State Output Standing Wave		2.5				
Input P1dB		5		dBm		

Use Restriction Parameters

Control Voltage Range	-4V~0V	
Input Power	15dBm	
Storage Temperature	-65°C~150°C	
Usage Temperature	-55℃~85℃	

External Dimensions

Notes:

- 1) All dimensions marked are in micrometers (µm);
- 2) Dimensional tolerance for external dimensions: ±50µm;
- 3) The chip thickness is 70µm.

Definition Of Bonding Pressure Point

Number	Symbol	Function Description	Size(µm ²)
1	RFin	RF signal input terminal, connected to an external 50 ohm system, requires an external DC blocking capacitor.	80×80
2	RFout	RF signal output terminal, connected to an external 50 ohm system, requires an external DC blocking capacitor.	80×80
3	V1	Control the voltage feeding end without the need for external bypass capacitors.	100×100
4	V2	Control the voltage feeding end without the need for external bypass capacitors.	100×100

Suggested Assembly Diagram

Note: There is no DC blocking capacitor for input and output.

On Chip Testing Curve(TA=+25°c)

. ,

Insertion Loss vs. Frequency (power on conditions from top to bottom are: V1=0V/V2=-0.8V~0V/V2 Step=0.04V;

V1=-1V/V2=-0.34V~-0.06V/V2_Step=0.04V)

On State Input/Output Standing Wave vs. Frequency@V1=0V; V2=-1V

4

3

2

1

0

10

20

30

40

50

60

Frequency(GHz)

Attenuation State Input/Output Standing Wave vs. Frequency@V1=-1V; V2=0V

The Attenuation Amount vs. Frequency (from bottom to top under the charging conditions:

V1=0V/V2=-0.8V-0V/V2_Step=0.04V; V1=-1V/V2=-0.34V~-0.06V/V2 Step=0.04V)

GVA-0060 Voltage Variable Attenuator Chip

Note:

- 1)Storage: The chip must be placed in a container with electrostatic protection and stored in a nitrogen environment.
- 2)Cleaning treatment: Bare chips must be operated and used in a purified environment, and it is prohibited to use liquid cleaning agents to clean the chips.
- 3)Electrostatic protection: Please strictly comply with ESD protection requirements to avoid electrostatic damage.
- 4)Conventional operation: To retrieve the chip, please use a vacuum chuck or a precision pointed camera. During the operation, avoid touching the chip surface with tools or fingers.
- 5)Power on sequence: When powering on, apply gate voltage first, then drain voltage; When powering off, first remove the leakage voltage, then remove the gate voltage.
- 6)Mounting operation: Chip installation can use AuSn solder eutectic sintering or conductive adhesive bonding process. The mounting surface must be clean and flat, and the gap between the chip and the input/output RF connection substrate should be minimized as much as possible.

Sintering process: Use 80/20 AuSn for sintering, with a sintering temperature not exceeding 300 °C, a sintering time as short as possible, not exceeding 20 seconds, and a friction time not exceeding 3 seconds.

Adhesive process: When bonding conductive adhesive, try to minimize the amount of glue applied, and refer to the information provided by the conductive adhesive manufacturer for curing conditions.

7)Bonding operation:

Unless otherwise specified, use 2 bonding wires (25 μ m diameter gold wire) for RF input and output, and keep the bonding wires as short as possible.

Hot ultrasonic bonding temperature is 150 °C, using the smallest possible ultrasonic energy.

8)Please contact the supplier if you have any questions.