

Performance Characteristics

RF/LO frequency range: 20GHz~55GHz

IF frequency range: DC~16GHz Conversion loss: 9dB (typical value) LO-RF isolation: 30dB (typical value)

RF input P1dB: -3dB

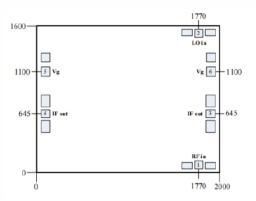
Local oscillator driving power: 8dBm

DC power supply: Vg=-0.5V

Chip size: 1.60 mm x 2.00 mm x 0.07 mm

Product Introduction

The Q-band broadband mixer chip covers a frequency range of 20GHz~55GHz, with a typical frequency conversion loss of 9dB, a typical local oscillator RF isolation of 30dB, and an RF input P1dB of -3dBm. Can achieve up and down mixing.

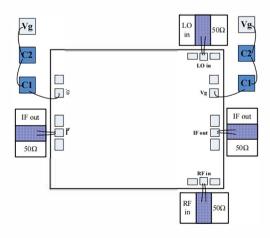

Electrical Performance (TA= +25 °C, L0= 8dBm, Vg= -0.5V)

Index	Min	Тур	Max	Unit
RF frequency range	20		55	GHz
Local oscillator frequency range	20		55	GHz
Intermediate frequency range	DC		16	GHz
SSB frequency conversaion loss	8		10	dB
Local oscillator/ RF isolation	20	30	50	dB
RF IN P1dB		-3		dBm
Local oscillator power	6	8	13	dBm
RF port standing wave	12	2	35	34
Standing wave at IF port	13	15	2	343

Use Restriction Parameters

RF Input Power	10dBm	
Local Oscillator Input Power	15dBm	
Negative Gate Voltage	-1V	
Storage Temperature	-65°C~150°C	
Operating Temperature	-55°C~85°C	

External Dimensions


Note:

- I) All dimensions marked are in micrometers (μm);
- 2) Dimensional tolerance for external dimensions: ±50µm;
- $\overset{,}{3}$) The chip thickness is 70 μm .

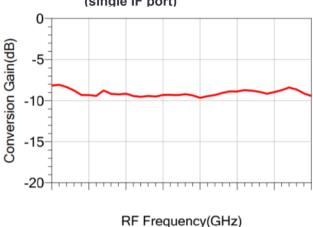
Bonding Pressure Point Definition

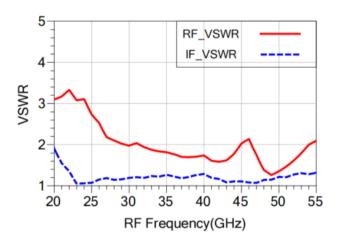
No.	Symbol	Function	Size(µm ²)
1	RF in	RF signal input terminal, external 50 ohm system, no need for DC isolation capacitor.	86X72
2	LO in	The local oscillator signal input terminal is connected to an external 50 ohm system and does not require a DC isolation capacitor.	86X86
3.4	IF out	Intermediate frequency signal output terminal, externally connected to a 50 ohm system, with no DC blocking capacitor on the chip.	100X100
5.6	Vg	The gate voltage feeding terminal requires external 100F and 10000pF bypass capacitors.	100X100

Suggested Assembly Diagram

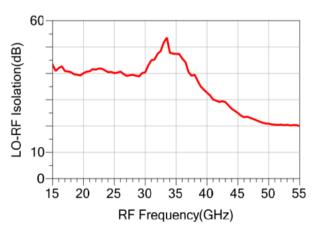
Add: 101 cecil street #14-10, tong eng building singapore 069533

Email: info@standardcircuit.com

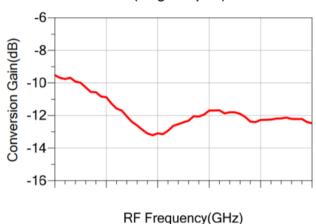

Web: www.standardcircuit.com Tel: +65 89472019

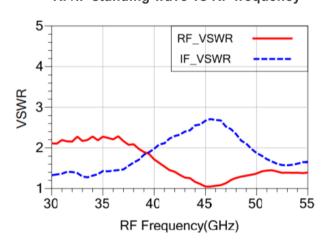

On Chip Testing Curve CTA = +2s·c)

Freq_IF= 1GHz, Freq_IF= Freq_RF-Freq_LO; Pwr_RF=-15dBm, Pwr_L0=8dBm, Vg=-0.5V


SSB frequency conversion loss VS RF frequency (single IF port)

RF/IF standing wave vs RF frequency


Local oscillator RF isolation vs RF frequency


On Chip Testing Curve $<T_A$ +2s c)

Freq_L0=29.6GHz, Freq_IF=Freq_RF-Freq_LO; Pwr_RF=-15dBm, Pwr_L0=8dBm, Vg=-0.5V

SSB frequency conversion loss VS RF frequency (single IF port)

RF/IF standing wave vs RF frequency

Note:

- 1) Storage: The chip must be placed in a container with electrostatic protection and stored in a nitrogen environment.
- 2) Cleaning treatment: Bare chips must be operated and used in a purified environment, and it is prohibited to use liquid cleaning agents to clean the chips.
- 3) Electrostatic protection: Please strictly comply with ESD protection requirements to avoid electrostatic damage.
- 4) Conventional operation: To retrieve the chip, please use a vacuum chuck or precision pointed tweezers. During the operation, avoid touching the chip surface with tools or fingers.
- 5) Power on sequence: When powering on, apply gate voltage first, then drain voltage; When powering off, first remove the leakage voltage, then remove the gate voltage.
- 6) Mounting operation: Chip installation can use AuSn solder eutectic sintering or conductive adhesive bonding process. The mounting surface must be clean and flat, and the gap between the chip and the input/output RF connection substrate should be minimized as much as possible.

Sintering process: Use 80/20 AuSn for sintering, the sintering temperature should not exceed 300 °C, the sintering time should be as short as possible, not exceeding 20 seconds, and the friction time should not exceed 3 seconds

Adhesive process: When bonding conductive adhesive, try to minimize the amount of glue applied, and refer to the information provided by the conductive adhesive manufacturer for curing conditions.

7) Keying operation:

Unless otherwise specified, use 2 bonding wires (with a diameter of 25um) for RF input and output, and keep the bonding wires as short as possible.

Hot ultrasonic bonding temperature is 150 °C, using the smallest possible ultrasonic energy.

8) Please contact the supplier if you have any questions.