

Performance Characteristics

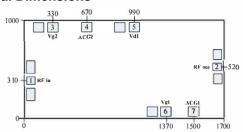
♦ Frequency range : DC~125GHz

♦ Typical values of linear gain:10dB@DC~110GHz, 7dB@110~125GHz

♦ DC power supply: Yd=45V@Id=48mA(Vg1=-0.4V,Vg2=1.1V)

♦ Chip size: 1.70mmx1.00 mmx0.07 mm

Product Introduction

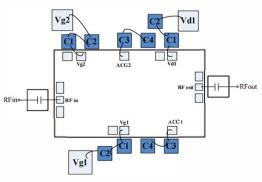

Ultra wideband power amplifier chip, with a frequency range covering DC~125GHz. The typical value of DC~110GHz linear gain is better than I0dB, and the typical value of reverse isolation is better than 30dB. The typical value of linear gain for 110-125GHz is 7dB, and the typical value of reverse isolation is 30dB.

Electrical performance table(Vd=4.5V, Id=48mA, T _A =+25°C)							
Parameter		Unit					
Frequency Range	DC-70	70-90	90-110	110-125	GHz		
Linear Gain	10	12	10	7	dB		
Reverse Isolation	35	35	30	30	dB		
Noise Coefficient	4		5		dB		
PldB	10	7	3	0	dBm		
Saturated Power	12	10	7	3	dBm		
Input Standing Wave		3					
Output VSWR		5					
Saturation Current	60				mA		

Use Restriction Parameters

Negative Gate Voltage	-1V
Positive Drain Voltage	5V
Input Power	10dBm
Storage Temperature	-65°C~150°C
Usage Temperature	-55℃~85℃

External Dimensions

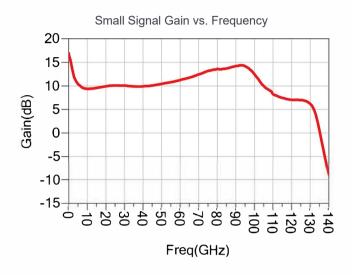

Notes:

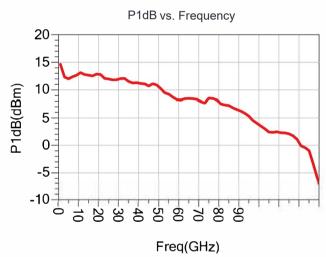
- 1) All dimensions marked are in micrometers (µm);
- 2) Dimensional tolerance for external dimensions: ±50µm;
- 3) The chip thickness is 70µm.

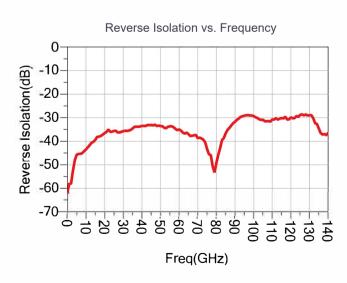
Definition Of Bonding Pressure Point

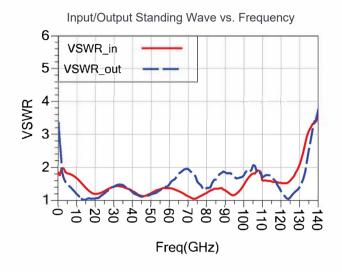
Number	Symbol	Function Description	Size(µm²)
1	RFin	RF signal input terminal, connected to an external 50 ohm system, requires the addition of Bias Tee or DC blocking capacitor	80×80
2	RFout	RF signal output terminal, connected to an external 50 ohm system, requires the addition of BiasTree or DC blocking capacitor	80×80
3、 6	Vg2 、 Vg1	Gate voltage feeding terminal requires external 100pF and 0.01uF bypass capacitors	100×100
4、	ACG2、 ACGI	Low frequency terminal requires external 1000pF and 0.47uf bypass capacitors	100×100
5	Vd1	The drain voltage feeding terminal requires an external 100pF and 0.01uf bypass capacitor	100×100

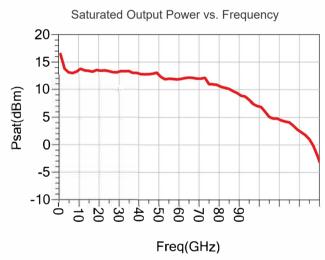
Suggested Assembly Diagram

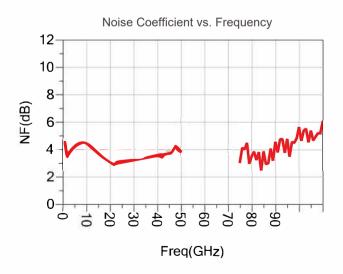



Notes:


1) The capacitance of the peripheral capacitor C1 is 100pF, the capacitance of C2 is 0.01 μF , the capacitance of C3 is 1000pF, and the capacitance of C4 is 0.47 μF . Among them, it is recommended to use a single-layer capacitor for C1 and try to be as close as possible to the chip bonding point. Suggest adding a 10 μF bypass capacitor to Vg and Vd.




Continuous Wave Test Curve In Film



Note:

- 1) Storage: The chip must be placed in a container with electrostatic protection and stored in a nitrogen environment.
- 2) Cleaning treatment: Bare chips must be operated and used in a purified environment, and it is prohibited to use liquid cleaning agents to clean the chips.
- 3) Electrostatic protection: Please strictly comply with ESD protection requirements to avoid electrostatic damage.
- 4) Conventional operation: To retrieve the chip, please use a vacuum chuck or a precision pointed camera. During the operation, avoid touching the chip surface with tools or fingers.
- 5) Power on sequence: When powering on, apply gate voltage first, then drain voltage; When powering off, first remove the leakage voltage, then remove the gate voltage.
- 6) Mounting operation: Chip installation can use AuSn solder eutectic sintering or conductive adhesive bonding process. The mounting surface must be clean and flat, and the gap between the chip and the input/output RF connection substrate should be minimized as much as possible.

Sintering process: Use 80/20 AuSn for sintering, with a sintering temperature not exceeding 300 °C, a sintering time as short as possible, not exceeding 20 seconds, and a friction time not exceeding 3 seconds.

Adhesive process: When bonding conductive adhesive, try to minimize the amount of glue applied, and refer to the information provided by the conductive adhesive manufacturer for curing conditions.

7) Bonding operation:

Unless otherwise specified, use 2 bonding wires (25 μ m diameter gold wire) for RF input and output, and keep the bonding wires as short as possible.

Hot ultrasonic bonding temperature is 150 °C, using the smallest possible ultrasonic energy.

8) Please contact the supplier if you have any questions.