

Performance characteristics

Frequency range: DC - 19 GHz

Insertion loss: 1.5 dB typ.

Isolation: 56 dB

On-state input/output standing wave ratio: 1.3 / 1.1

50Ohm input / output100% on-wafer testing

Chip size: 1.76 x 1.71 x 0.1mm

Product Introduction

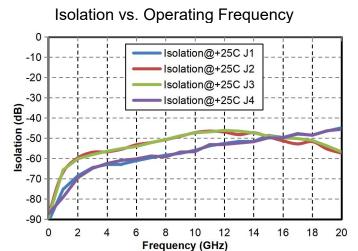
ISW-00194T is a GaAs MMIC absorptive single-pole four-throw switch chip with 50Ω matching at the input/output ends, a frequency range covering DC ~ 19 GHz , and 0V/-5V power supply. The switching speed is 10ns. The chip uses on-chip through-hole metallization technology to ensure good grounding, no additional grounding measures are required, and it is simple and convenient to use. The back of the chip is metallized and is suitable for eutectic sintering or conductive adhesive bonding processes.

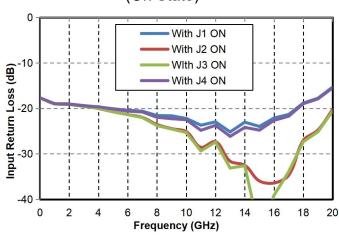
Use restriction parameter ¹			
Control voltage range	-8V ∼ +0.5V		
Maximum input power	+30dBm		
Operating temperature	-55 ~ +85°C		
storage temperature	-65 ~ +150°C		

[1] Exceeding any of these maximum limits may cause permanent damage.

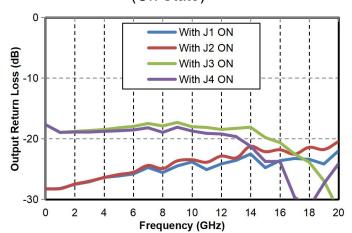
Electrical Parameters (TA = +25°C)					
index	Minimum	Typical Value	Maximum	unit	
Frequency Range	DC-19			GHz	
Insertion loss	-	1.5	1.8	dB	
Isolation	46	56	-	dB	
On-state input/output return loss (ON)	17/17	23/22	-	dB	
P-1dB@18GHz	-	22	-	dBm	
Switching speed	-	10	-	ns	

Add: 101 cecil street #14-10, tong eng building singapore 069533 Email: info@standardcircuit.com

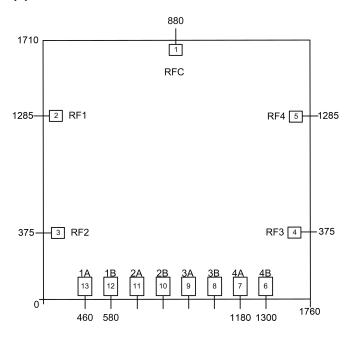

Web: www.standardcircuit.com Tel: +65 82613258



Main index test curve


Insertion Loss vs. Operating Frequency -0.5 -1 Insertion Loss (dB) 1.5 -2 -2.5 S21@+25C J1 -3 S21@+25C J2 S21@+25C J3 -3.5 S21@+25C J4 0 2 10 16 18 20 Frequency (GHz)

Input Return Loss vs. Operating Frequency (On State)



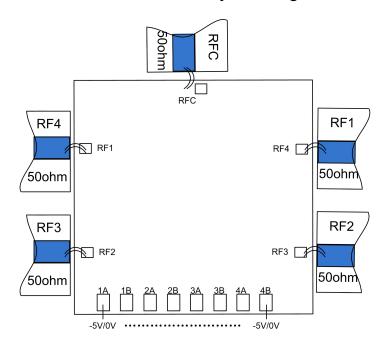
Output Return Loss vs. Operating Frequency (On State)

Appearance structure ²

[2] All units in the figure are micrometers

Bonding point definition							
Bonding point number	Function Symbol	Functional Description					
1	RF COMM	RF signal input terminal , external DC blocking					
	KF COIVIIVI	capacitor is required					
2, 3, 4, 5	RF OUTPUT RF signal output terminal , external DC block						
	KF OUTPUT	RF signal output terminal , external DC blocking capacitor is required					
6, 7, 8, 9, 10, 11, 12, 13	Voltage Control	On/off control					
Chip bottom	GND	The bottom of the chip needs to be well grounded					
	GND	to RF and DC					

Truth table


1A	1B	2A	2B	3A	3B	4A	4B	path
0	-5	-5	0	-5	0	-5	0	RFC-RF1
-5	0	0	-5	-5	0	-5	0	RFC-RF2
-5	0	-5	0	0	-5	-5	0	RFC-RF3
-5	0	-5	0	-5	0	0	-5	RFC-RF4

Add: 101 cecil street #14-10, tong eng building singapore 069533 Email: info@standardcircuit.com

Web: www.standardcircuit.com Tel: +65 82613258

Recommended assembly drawing

Precautions for use

- The chip needs to be stored in an anti-static container and kept in a nitrogen environment.
- Do not attempt to clean the bare die surface using wet chemical methods.
- Please strictly comply with ESD protection requirements to avoid electrostatic damage to bare chips.
- General operation: Please use precision pointed tweezers to pick up bare chips. Avoid touching the chip surface with tools or fingers during operation.
- Rack mounting operation suggestions: Bare chip mounting can be done by AuSn solder eutectic sintering
 or conductive adhesive bonding. The mounting surface must be clean and flat.
- Sintering process: It is recommended to use AuSn solder sheets with a gold-tin ratio of 80/20. The working surface temperature reaches 255 $^{\circ}$ C and the tool (vacuum chuck) temperature reaches 265 $^{\circ}$ C. When the high-temperature mixed gas (nitrogen-hydrogen ratio of 90/10) is blown to the chip, the temperature at the top of the tool should be raised to 290 $^{\circ}$ C. Do not let the chip exceed 320 $^{\circ}$ C for more than 20 seconds. The friction time should not exceed 3 seconds.
- Bonding process: The amount of conductive glue dispensed should be as small as possible. After the
 chip is placed in the installation position, the conductive glue should be vaguely visible around it. For
 curing conditions, please follow the information provided by the conductive glue manufacturer.
- Bonding operation suggestions: Use Φ0.025mm (1mil) gold wire for both ball and wedge bonding.
 Thermo-ultrasonic bonding temperature is 150 °C. The pressure of the wedge for ball bonding is
 40~50gf, and the pressure of the wedge bonding is 18~22gf. Use the smallest possible ultrasonic
 energy. The bonding starts at the pressure point on the chip and ends at the package (or substrate).

Add: 101 cecil street #14-10, tong eng building singapore 069533 Email: info@standardcircuit.com

Web: www.standardcircuit.com Tel: +65 82613258