
GaAs MMIC monolithic integrated 4-way 0 degree power divider, 6-18GHz

Performance characteristics

Frequency range: 6-18GHz
Insertion loss: 1.0 dB
50Ohm input / output
100% on-wafer testing

Chip size: 1.8 x 1.2 x 0.1mm

Functional Block Diagram

Product Introduction

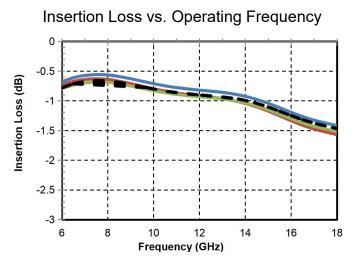
GPD-06183 monolithic integrated 4-way 0- degree power divider has low insertion loss and excellent port standing wave characteristics in the frequency range of $6 \sim 18$ GHz, with an isolation of 22 dB, which is very suitable for microwave hybrid integrated circuits and multi-chip modules. The chip adopts on-chip through-hole metallization process to ensure good grounding, does not require additional grounding measures, and is simple and convenient to use.

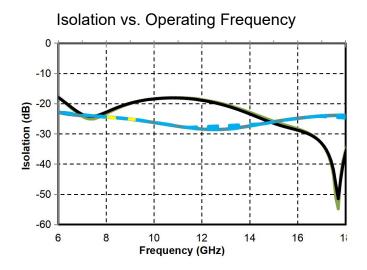
Use restriction parameter ¹			
Maximum input power	+40dBm		
Operating temperature	-55 ~ +85°C		
storage temperature	-65 ~ +150°C		

[1] Exceeding any of these maximum limits may cause permanent damage.

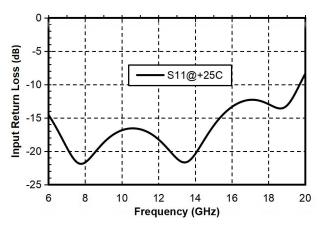
Electrical performance parameters (TA = +25°C)						
index	Minimum	Typical Value	Maximum	unit		
Frequency Range	6-18			G Hz		
Insertion loss	0.7	1.0	1.5	dB		
Insertion loss fluctuation		± 0.4		dB		
Isolation	17	22	-	dB		
Input return loss	12	15	-	dB		
Output return loss	18	21	-	dB		

Add: 101 cecil street #14-10, tong eng building singapore 069533 Email: info@standardcircuit.com

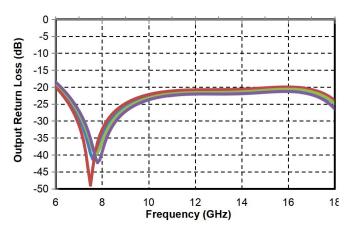

Web: www.standardcircuit.com Tel: +65 82613258

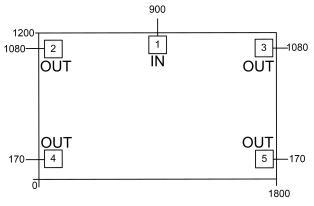


GaAs MMIC Monolithic Integrated 4-way 0-degree Power Divider, 6-18GH


Z

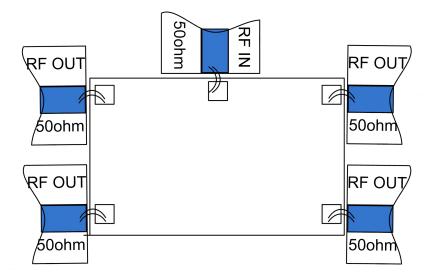
Main index test curve




Input Return Loss vs. Operating Frequency

Output Return Loss vs. Operating Frequency

Appearance structure ²


[2] All units in the figure are micrometers

GaAs MMIC Monolithic Integrated 4-way 0-degree Power Divider, 6-18GHz

Bonding point definition					
Bonding point	Function	Functional Description	Equivalent Circuit		
number	Symbol				
1	RF IN	RF signal input terminal	RF IN		
2, 3, 4, 5	RF OUT	RF signal output terminal	——— RF Out		
Chip bottom GND	CND	The bottom of the chip needs to be	GND		
	GND	well grounded to RF and DC			

Recommended assembly drawing

Precautions for use

- The chip needs to be stored in an anti-static container and kept in a nitrogen environment.
- Do not attempt to clean the bare die surface using wet chemical methods.
- Please strictly comply with ESD protection requirements to avoid electrostatic damage to bare chips.
- General operation: Please use precision pointed tweezers to pick up bare chips. Avoid touching the chip surface with tools or fingers during operation.
- Rack mounting operation suggestions: Bare chip mounting can be done by AuSn solder eutectic sintering or conductive adhesive bonding. The mounting surface must be clean and flat.
- ullet Sintering process: It is recommended to use AuSn solder sheets with a gold-tin ratio of 80/20 . The working surface temperature reaches 255 $^{\circ}$ C and the tool (vacuum chuck) temperature

Add: 101 cecil street #14-10, tong eng building singapore 069533 Email: info@standardcircuit.com

Web: www.standardcircuit.com Tel: +65 82613258

reaches 265 $^{\circ}$ C. When the high-temperature mixed gas (nitrogen-hydrogen ratio of 90/10) is blown to the chip, the temperature at the top of the tool should be raised to 290 $^{\circ}$ C. Do not let the chip exceed 320 $^{\circ}$ C for more than 20 seconds. The friction time should not exceed 3 seconds.

- Bonding process: The amount of conductive glue dispensed should be as small as possible. After
 the chip is placed in the installation position, the conductive glue should be vaguely visible around
 it . For curing conditions, please follow the information provided by the conductive glue
 manufacturer.
- Bonding operation suggestions: Use Φ0.025mm (1mil) gold wire for both ball and wedge bonding. Thermo-ultrasonic bonding temperature is 150 °C. The pressure of the wedge for ball bonding is 40~50gf, and the pressure of the wedge bonding is 18~22gf. Use the smallest possible ultrasonic energy. The bonding starts at the pressure point on the chip and ends at the package (or substrate).

Add: 101 cecil street #14-10, tong eng building singapore 069533 Web: www. Email: info@standardcircuit.com Tel: +65 82

Web: www.standardcircuit.com Tel: +65 82613258