

#### Performance characteristics

Frequency range: 32-38GHz Small Signal Gain: 18 dB Gain flatness : ± 1.7 dB

P-1dB: 33 dBm Psat: 33.5 dBm

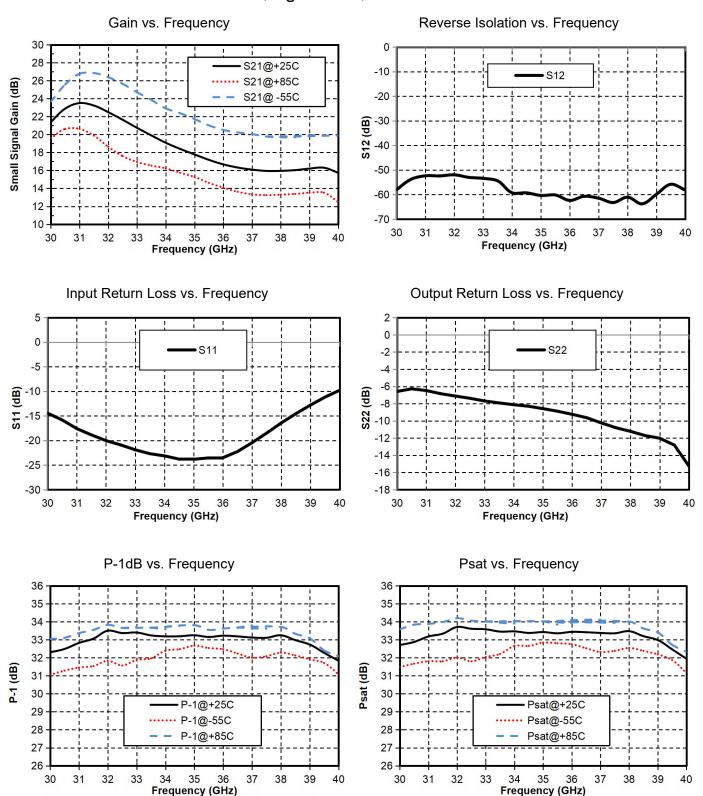
Power supply: + 6V@1200mA, 1500mA under RF drive

500hm input/output 100% on-chip testing

Chip size: 2.26 x 2.95 x 0.1mm

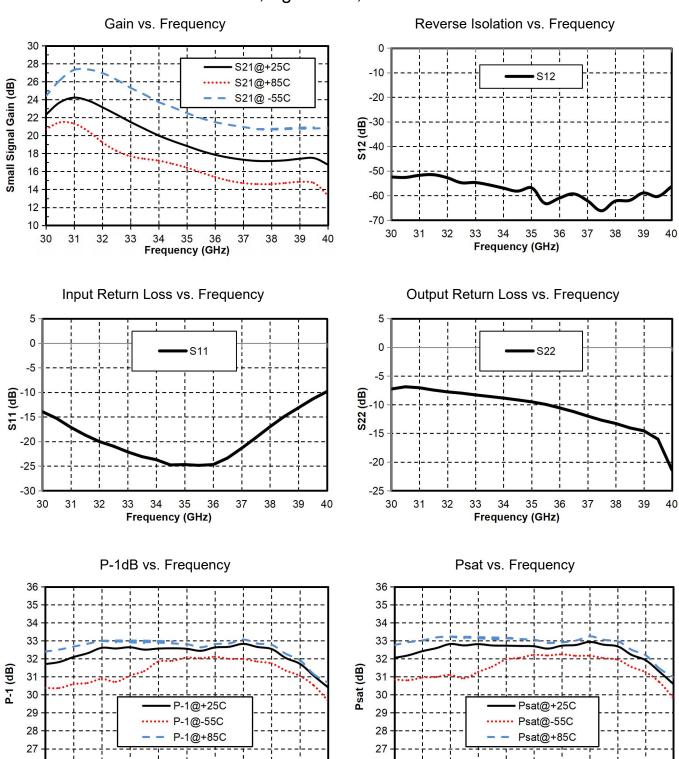
#### **Product Introduction**

GPA -3238C is a broadband high-gain, high-efficiency, high- power amplifier chip based on GaAs technology, covering a frequency range of 32~38GHz, with a small signal gain of 18dB, a Psat output power of 33.5dBm, and an efficiency of 23%. The amplifier also supports +5V operation, with a Psat output power of 32.5dBm and an efficiency of 26% when working at +5V. The chip via metallization process ensures good grounding, and the back side is metallized, which is suitable for eutectic sintering process.


| Use restriction parameter <sup>1</sup> |              |  |
|----------------------------------------|--------------|--|
| Maximum drain voltage                  | +8 V         |  |
| Maximum gate bias                      | - 3 V        |  |
| Maximum input power                    | +30 dBm      |  |
| Operating temperature                  | -55 ~ +85°C  |  |
| Storage temperature                    | -65 ~ +150°C |  |

[1] Exceeding any of these maximum limits may cause permanent damage.

| Electrical parameters (Ta=+25°C, Vd = +6 V, Vg=-0.7V, Ids= 1200 mA)                 |         |               |         |      |
|-------------------------------------------------------------------------------------|---------|---------------|---------|------|
| index                                                                               | Minimum | Typical Value | Maximum | unit |
| Frequency Range                                                                     |         | 32-38         |         | GHz  |
| Small Signal Gain                                                                   | -       | 18            | -       | dB   |
| Gain Flatness                                                                       | ± 1.7   |               | dB      |      |
| P-1dB                                                                               | -       | 33            | -       | dBm  |
| Psat                                                                                | -       | 33.5          | -       | dBm  |
| PAE                                                                                 | -       | twenty three  | -       | %    |
| Input return loss                                                                   | -       | 10            | -       | dB   |
| Output return loss                                                                  | -       | 15            | -       | dB   |
| * By tuning the Vg terminal voltage -2V~0V , the recommended gate voltage is -0.7V. |         |               |         |      |




Main index test curve Vd = +6V, Vg = -0.7V, Ids = 1200mA





Main index test curve Vd = +5V, Vg = -0.7V, Ids = 1200mA



26

31

35

Frequency (GHz)

38

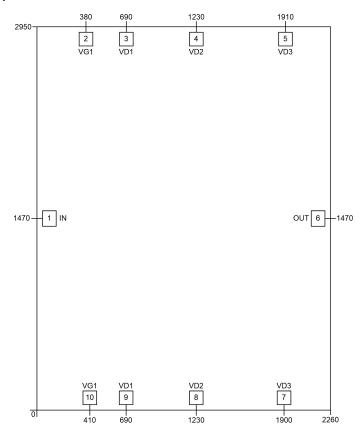
39

26 <del>|</del> 30

31

35

Frequency (GHz)


38

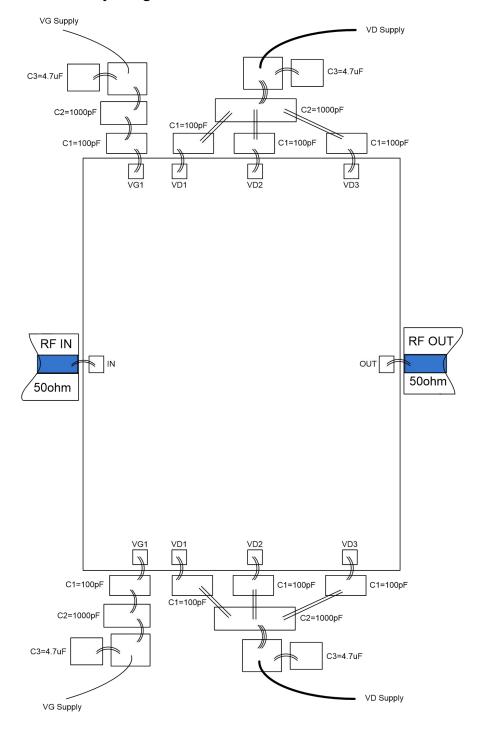
39

40



Appearance and structure (unit in the figure is micrometer)




| Bonding point definition |                    |                                                                                                        |  |  |
|--------------------------|--------------------|--------------------------------------------------------------------------------------------------------|--|--|
| Bonding point number     | Function<br>Symbol | Functional Description                                                                                 |  |  |
| 1                        | RF IN              | The signal input terminal is connected to a 50 ohm circuit, and no DC blocking capacitor is required.  |  |  |
| 6                        | RF OUT             | The signal output terminal is connected to a 50 ohm circuit, and no DC blocking capacitor is required. |  |  |
| 3, 4, 5, 7, 8, 9         | V D1~3             | Amplifier drain bias, external 100pF , 1000pF , 4.7uF bypass capacitors are required.                  |  |  |
| 2.10                     | VG1                | Amplifier gate bias , external 100pF , 1000pF , 4.7uF bypass capacitors are required.                  |  |  |
| Chip bottom              | GND                | needs to be in good contact with the RF and DC grounds.                                                |  |  |



Web: www.standardcircuit.com

Tel: +65 82613258

### Recommended assembly diagram

