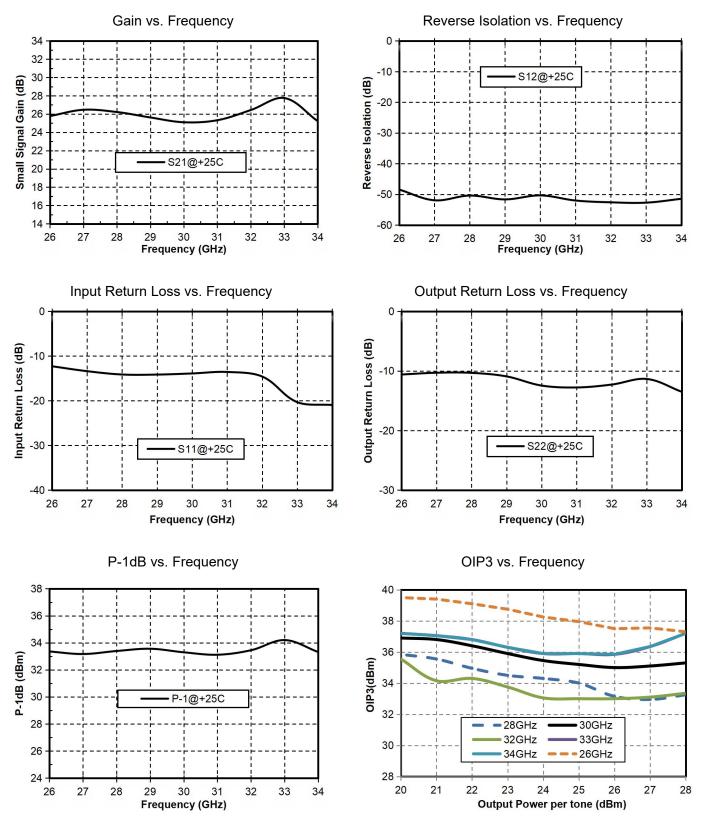


Performance characteristics

Frequency range: 26-34GHz Small Signal Gain: 25.5 dB P-1dB: 33 dBm Psat: 33.5 dBm Power supply: + 6V@1300mA 50Ohm input/output 100% on-chip testing Chip size: 2.6 x 2.44 x 0.1mm

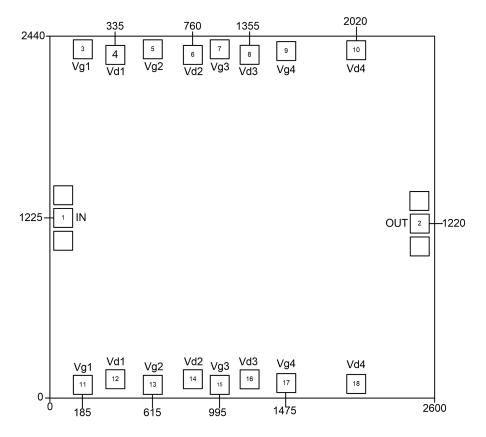
Product Introduction

GPA -2634A is a broadband high-gain, high-efficiency, high- power amplifier chip based on GaAs technology, covering a frequency range of 26~34GHz, a small signal gain of 25.5dB, and a P-1 output power of 33dBm. The chip via metallization process ensures good grounding, and the back side is metallized for eutectic sintering process.


Use restriction parameter ¹		
Maximum drain voltage	+9 V	
Maximum gate bias	- 3 V	
Maximum input power	+25 dBm	
Operating temperature	-55 ~ +85°C	
Storage temperature	-65 ~ +150°C	

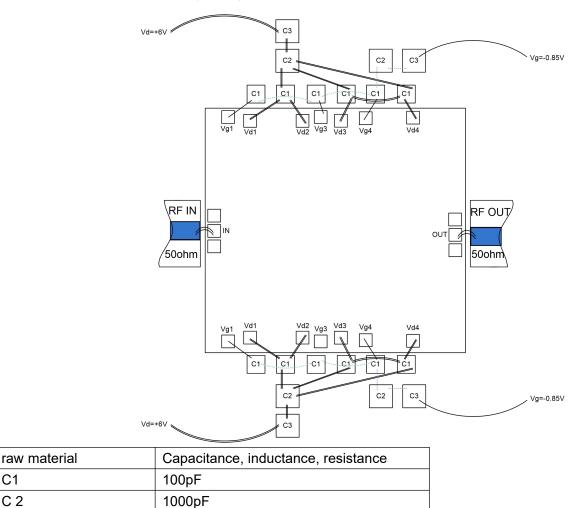
[1] Exceeding any of these maximum limits may cause permanent damage.

Electrical parameters (Ta=+25°C, Vd= 6 V, Vg=-0.8V, Ids= 1300 mA)					
index	Minimum	Typical Value	Maximum	unit	
Frequency Range	26-34			GHz	
Small Signal Gain	25	25.5	27.5	dB	
Gain Flatness	± 1.25			dB	
P-1dB	32.5	33	34	dBm	
Psat	33	33.5	34	dBm	
OIP3@30G with 24dBm/tone		35.5		dBm	
Input return loss	8	14	-	dB	
Output return loss	8	11	-	dB	
* By tuning the Vg terminal volta	ge -2V~0V , the reco	ommended gate voltage	e is -0.8V.	·	



Main index test curve

Appearance structure ²



[2] All units in the figure are micrometers

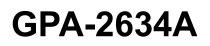
Bonding point definition			
Bonding point number	Function Symbol	Functional Description	
1	RF IN	The signal input terminal is connected to a 50 ohm circuit, and no DC blocking capacitor is required.	
2	RF OUT	RF OUT The signal output terminal is connected to a 50 ohm circuit, and no DC blocking capacitor is required.	
3, 5, 7, 9, 11, 13, 15, 17	Vg1 ~Vg4	Amplifier drain bias, external 100pF , 1000pF , 4.7uF bypass capacitors are required.	
4, 6, 8, 10, 12, 14, 16, 18	Vd1~Vd4	Vd1~Vd4 Amplifier drain bias, external 100pF , 1000pF , 4.7uF bypass capacitors are required.	
Chip bottom	GND	The bottom of the chip needs to be in good contact with the RF and DC grounds.	

Recommended assembly diagram

Notice

C1

C 2


C 3

- The chip must be stored in an anti-static container and kept in a nitrogen environment.
- Do not attempt to clean the bare die surface using wet chemical methods.

4.7uF

- Please strictly follow the ESD protection requirements to avoid static damage to the bare chip.
- General operation: Please use precision pointed tweezers to pick up bare chips. Avoid touching the chip surface with tools or fingers during operation.
- Rack mounting operation suggestions: AuSn solder eutectic sintering process can be used for bare chip mounting. The mounting surface must be clean and flat.
- Sintering process: It is recommended to use AuSn solder sheets with a gold-tin ratio of 80/20. The working surface temperature reaches 255 °C and the tool (vacuum chuck) temperature reaches 265 °C . When the high-temperature mixed gas (nitrogen-hydrogen ratio of 90/10) is blown to the chip, the temperature at the top of the tool should be raised to 290 °C . Do not let the chip exceed 320 °C for more than 20 seconds. The friction time should not exceed 3 seconds.

 Bonding operation suggestions: Use Φ0.025mm (1mil) gold wire for both ball and wedge bonding. Thermosonic bonding temperature is 150 °C. The pressure of the wedge bonding knife is 40~50gf for ball bonding and 18~22gf for wedge bonding. Use the smallest possible ultrasonic energy. The bonding starts at the pressure point on the chip and ends at the package (or substrate).