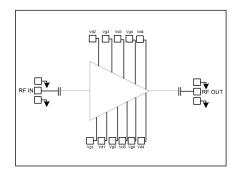


Performance characteristics

Frequency range: 26-33GHz Small Signal Gain: 27.5 dB


P-1dB: 30.5 dBm Psat: 31 dBm

Power supply: + 6V@450mA

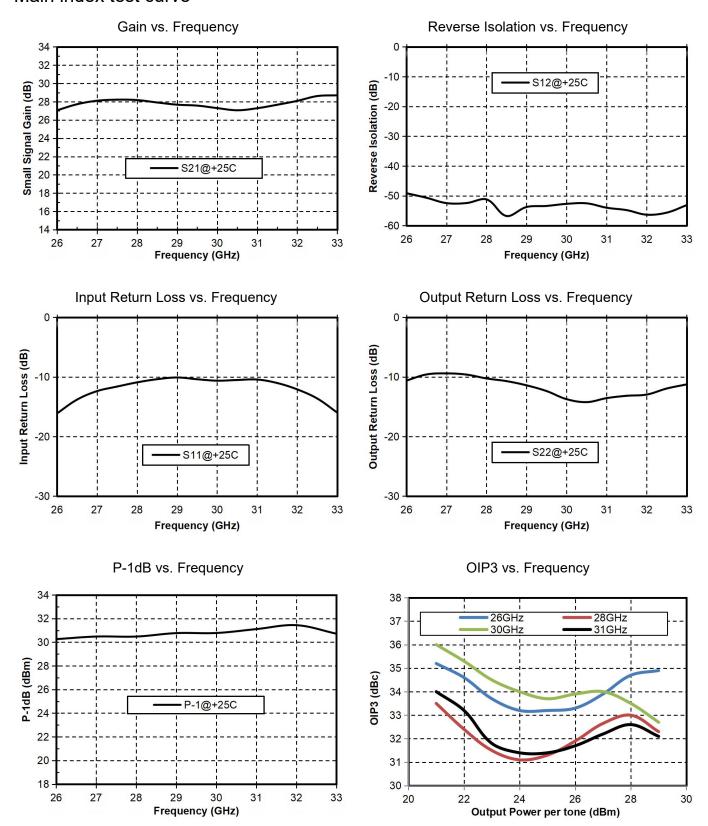
500hm input/output 100% on-chip testing

Chip size: 2.6 x 1.5 x 0.1mm

Functional Block Diagram

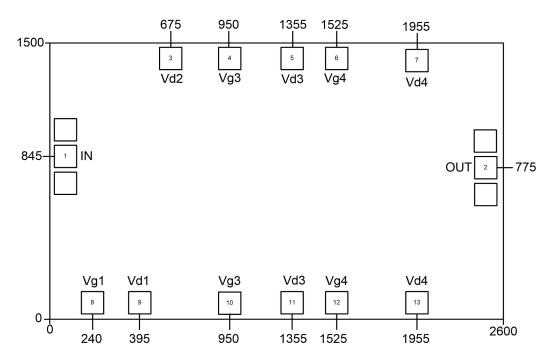
Product Introduction

GPA -2633A is a broadband high-gain, high-efficiency, high- power amplifier chip based on GaAs technology, covering a frequency range of 26~ 33GHz, a small signal gain of 27.5dB, and a P-1 output power of 30.5dBm. The chip via metallization process ensures good grounding, and the back side is metallized for eutectic sintering process.


Use restriction parameter ¹		
Maximum drain voltage	+9 V	
Maximum gate bias	- 3 V	
Maximum input power	+25 dBm	
Operating temperature	-55 ~ +85°C	
Storage temperature	-65 ~ +150°C	

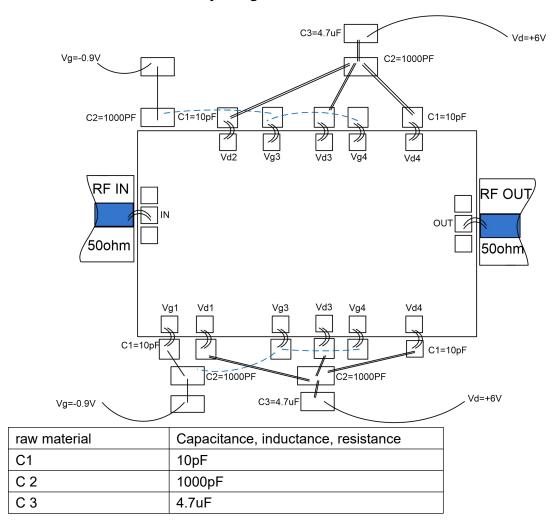
[1] Exceeding any of these maximum limits may cause permanent damage.

Electrical parameters (Ta=+25°C, Vd= +6 V, Vg=-0.9V, Ids= 450 mA)					
index	Minimum	Typical Value	Maximum	unit	
Frequency Range	26-33 GHz				
Small Signal Gain	27	27.5	28.5	dB	
Gain Flatness	± 0.75			dB	
P-1dB	30	30.5	31	dBm	
Psat	30.5	31	31.5	dBm	
OIP3@30G with 24dBm/tone		34		dBm	
Input return loss	10	12	-	dB	
Output return loss	9.5	11.5	-	dB	
* By tuning the Vg terminal volta	ge -2V~0V , the reco	ommended gate voltage	e is -0.9V.	•	



Main index test curve

Appearance structure ²



[2] All units in the figure are micrometers

Bonding point definition				
Bonding point number	Function Symbol	Functional Description		
1	RF IN	The signal input terminal is connected to a 50 ohm circuit,		
		and no DC blocking capacitor is required.		
2	RF OUT	The signal output terminal is connected to a 50 ohm		
		circuit, and no DC blocking capacitor is required.		
3, 5, 7, 9, 11, 13	V D1~4	Amplifier drain bias, external 10pF , 1000pF , 4.7uF		
		bypass capacitors are required.		
4, 6, 8, 10, 12	VG1 VG2 VG3 VG4	Amplifier gate bias, external 10pF , 1000pF , 4.7uF		
		bypass capacitors are required.		
Chip bottom	GND	The bottom of the chip needs to be in good contact with		
		the RF and DC grounds.		

Recommended assembly diagram

Notice

- The chip must be stored in an anti-static container and kept in a nitrogen environment.
- Do not attempt to clean the bare die surface using wet chemical methods.
- Please strictly follow the ESD protection requirements to avoid static damage to the bare chip.
- General operation: Please use precision pointed tweezers to pick up bare chips. Avoid touching the chip surface with tools or fingers during operation.
- Rack mounting operation suggestions: AuSn solder eutectic sintering process can be used for bare chip
 mounting. The mounting surface must be clean and flat.
- Sintering process: It is recommended to use AuSn solder sheets with a gold-tin ratio of 80/20. The working surface temperature reaches 255 °C and the tool (vacuum chuck) temperature reaches 265 °C. When the high-temperature mixed gas (nitrogen-hydrogen ratio of 90/10) is blown to the chip, the temperature at the top of the tool should be raised to 290 °C. Do not let the chip exceed 320 °C for more than 20 seconds. The friction time should not exceed 3 seconds.

Bonding operation suggestions: Use Φ0.025mm (1mil) gold wire for both ball and wedge bonding. Thermosonic bonding temperature is 150 °C. The pressure of the wedge bonding knife is 40~50gf for ball bonding and 18~22gf for wedge bonding. Use the smallest possible ultrasonic energy. The bonding starts at the pressure point on the chip and ends at the package (or substrate).

Add: 101 cecil street #14-10, tong eng building singapore 069533 Web: www.standardcircuit.com Tel: +65 82613258