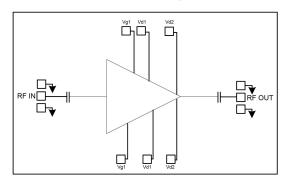


Performance characteristics

Frequency range: 18-28GHz Small Signal Gain: 14 dB


P-1dB: 31 dBm Psat: 31.5 dBm

Power supply: +6 V @ 650m A

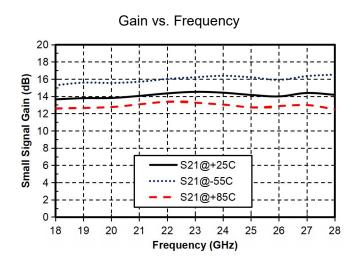
500hm input/output 100% on-chip testing

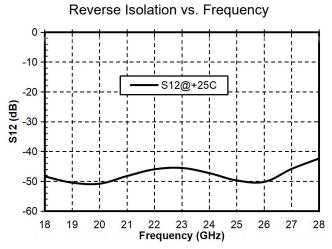
Chip size: 2.65 x 1.7 x 0.1mm

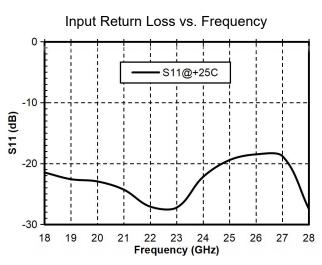
Functional Block Diagram

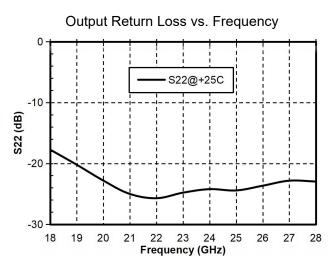
Product Introduction

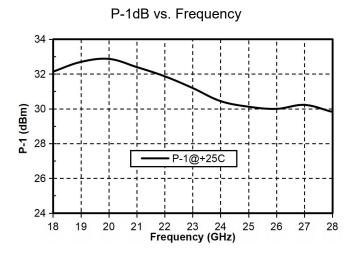
GPA -1828C is a broadband high-gain, high-efficiency, high- power amplifier chip based on GaAs technology, covering a frequency range of 18~28GHz, a small signal gain of 14dB, and a Psat output power of 31.5dBm. The chip via metallization process ensures good grounding, and the back side is metallized for eutectic sintering process.

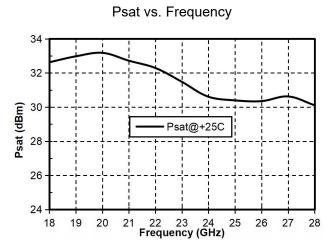

Use restriction parameter ¹		
Maximum drain voltage	+8 V	
Maximum gate bias	- 3 V	
Maximum input power	+25 dBm	
Operating temperature	-55 ~ +85°C	
Storage temperature	-65 ~ +150°C	

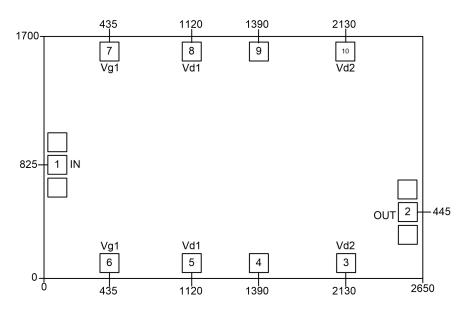

[1] Exceeding any of these maximum limits may cause permanent damage.


Electrical parameters (Ta=+25°C, Vd=+ 6 V, Vg=-0.9V, Ids= 650 mA)					
index	Minimum	Typical Value	Maximum	unit	
Frequency Range		18-28		GHz	
Small Signal Gain	13.5	14	14.5	dB	
Gain Flatness	± 0.5		dB		
P-1dB	29.5	31	32.5	dBm	
Psat	30	31.5	33	dBm	
Input return loss	18	22	-	dB	
Output return loss	17	23	-	dB	
Quiescent Current		650		mA	
* By tuning the Vg terminal voltage -2V~0V , the recommended gate voltage is -0.9V.					




Main index test curve





Appearance structure ²


[2] All units in the figure are micrometers

Bonding point definition				
Bonding point number	Function Symbol	Functional Description		
1	RF IN	The signal input terminal is connected to a 50 ohm circuit, and no DC blocking capacitor is required.		
2	RF OUT	The signal output terminal is connected to a 50 ohm circuit, and no DC blocking capacitor is required.		
3, 5, 8, 10	V D1~2	Amplifier drain bias, external 100pF , 1000pF , 0.01uF bypass capacitors are required.		
4, 9	-	external 100pF bypass capacitor is required		
6, 7	VG1~2	Amplifier gate bias, external 100pF , 1000pF , 0.01uF bypass capacitors are required.		
Chip bottom	GND	The bottom of the chip needs to be in good contact with the RF and DC grounds.		

^{*}Please contact the manufacturer for more detailed drawings during assembly

Recommended assembly diagram

raw material	Capacitance
C1	100pF
C 2	1000pF
C 3	0.01uF

^{*} Please contact the manufacturer for more detailed drawings during assembly

Notice

- The chip must be stored in an anti-static container and kept in a nitrogen environment.
- Do not attempt to clean the bare die surface using wet chemical methods.
- Please strictly follow the ESD protection requirements to avoid static damage to the bare chip.
- General operation: Please use precision pointed tweezers to pick up bare chips. Avoid touching the chip surface with tools or fingers during operation.
- Rack mounting operation suggestions: AuSn solder eutectic sintering process can be used for bare chip
 mounting. The mounting surface must be clean and flat.
- Sintering process: It is recommended to use AuSn solder sheets with a gold-tin ratio of 80/20. The working surface temperature reaches 255 °C and the tool (vacuum chuck) temperature reaches 265 °C. When the high-temperature mixed gas (nitrogen-hydrogen ratio of 90/10) is blown to the chip, the temperature at the top of the tool should be raised to 290 °C. Do not let the chip exceed 320 °C for more than 20 seconds. The friction time should not exceed 3 seconds.

Add: 101 cecil street #14-10, tong eng building singapore 069533 Email: info@standardcircuit.com

Bonding operation suggestions: Use Φ0.025mm (1mil) gold wire for both ball and wedge bonding. Thermosonic bonding temperature is 150 °C . The pressure of the wedge bonding knife is 40~50gf for ball bonding and 18~22gf for wedge bonding. Use the smallest possible ultrasonic energy. The bonding starts at the pressure point on the chip and ends at the package (or substrate).

Add: 101 cecil street #14-10, tong eng building singapore 069533 Email: info@standardcircuit.com Tel: +65 82613258

Web: www.standardcircuit.com