

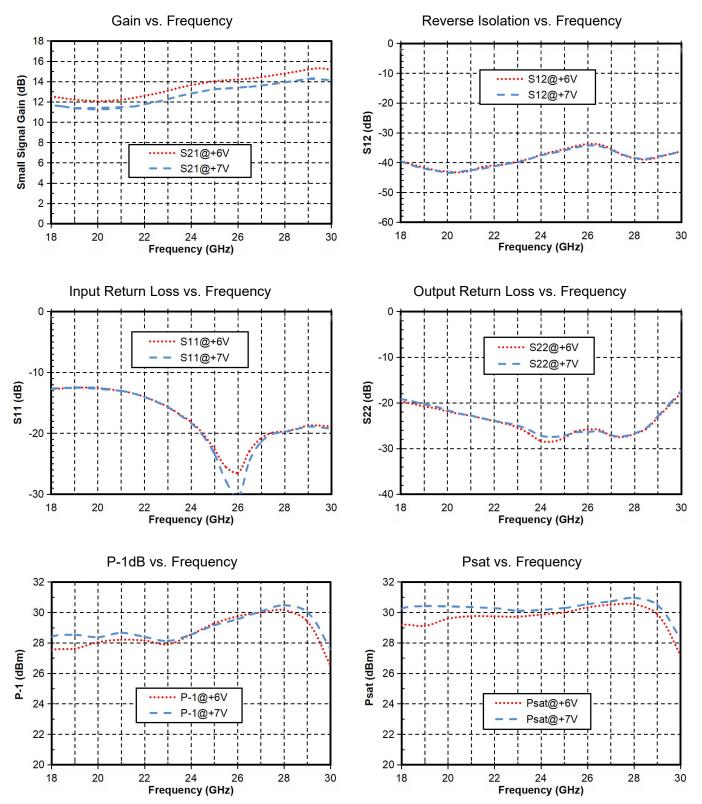
Performance characteristics

Frequency range: 18-28GHz Small Signal Gain: 13 dB P-1dB: 29 dBm Psat: 30.5 dBm Power supply: 6V@630mA ~ 7V @ 600mA 500hm input/output 100% on-chip testing Chip size: 2.1 x 1.3 x 0.1mm

Functional Block Diagram

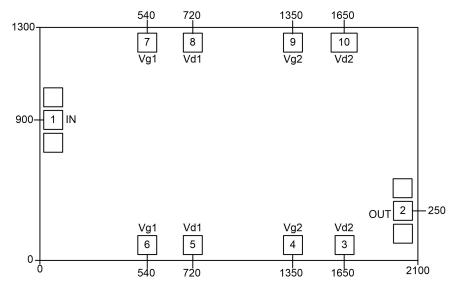
Product Introduction

GPA-1828A is a broadband high-gain, high-efficiency, high- power amplifier chip based on GaAs technology, covering a frequency range of 18~28GHz, a small signal gain of 13dB, and a Psat output power of 30dBm. The chip via metallization process ensures good grounding, and the back side is metallized for eutectic sintering process.


Use restriction parameter ¹				
Maximum drain voltage	+9 V			
Maximum gate bias	- 3 V			
Maximum input power	+25 dBm			
Operating temperature	-55 ~ +85°C			
Storage temperature	-65 ~ +150°C			

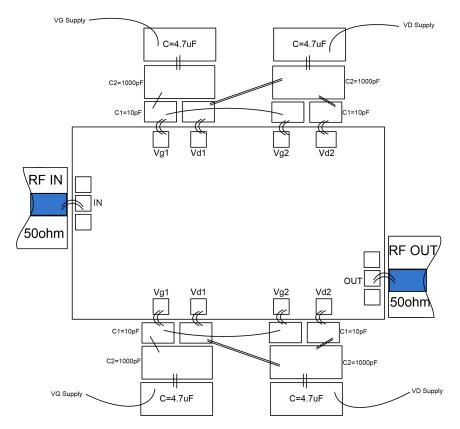
[1] Exceeding any of these maximum limits may cause permanent damage.

Electrical parameters (Ta=+25°C, Vd= 7 V, Vg=-0.8V, Ids= 600 mA)						
index	Minimum	Typical Value	Maximum	unit		
Frequency Range	18-28			GHz		
Small Signal Gain	11.5	13	14	dB		
Gain Flatness	± 0.75			dB		
P-1dB	28.5	29	30.5	dBm		
Psat	30	30.5	31	dBm		
Input return loss	12	17	-	dB		
Output return loss	19	24	-	dB		
* By tuning the Vg terminal vo	oltage -2V~0V , the reco	ommended gate voltage is	-0.8V.			



Main index test curve

Appearance structure ²



[2] All units in the figure are micrometers

Bonding point	definition		
Bonding point	Function	Functional Description	Equivalent Circuit
number	Symbol		
		The signal input terminal is connected to a 50	
1	RF IN	ohm circuit, and no DC blocking capacitor is required.	
		The signal output terminal is connected to a	
2	RF OUT	50 ohm circuit, and no DC blocking capacitor	
	is required.		
3, 4, 8, 10	V D1~2	Amplifier drain bias, external 10pF , 1000pF , 4.7uF bypass capacitors are required.	Vad
4, 6, 7, 9	VG1~2	Amplifier gate bias, external 10pF , 1000pF , 4.7uF bypass capacitors are required.	Vg T
Chip bottom	GND	The bottom of the chip needs to be in good contact with the RF and DC grounds.	GND

Recommended assembly diagram

Notice

- The chip must be stored in an anti-static container and kept in a nitrogen environment.
- Do not attempt to clean the bare die surface using wet chemical methods.
- Please strictly follow the ESD protection requirements to avoid static damage to the bare chip.
- General operation: Please use precision pointed tweezers to pick up bare chips. Avoid touching the chip surface with tools or fingers during operation.
- Rack mounting operation suggestions: AuSn solder eutectic sintering process can be used for bare chip mounting. The mounting surface must be clean and flat.
- Sintering process: It is recommended to use AuSn solder sheets with a gold-tin ratio of 80/20. The working surface temperature reaches 255 °C and the tool (vacuum chuck) temperature reaches 265 °C. When the high-temperature mixed gas (nitrogen-hydrogen ratio of 90/10) is blown to the chip, the temperature at the top of the tool should be raised to 290 °C. Do not let the chip exceed 320 °C for more than 20 seconds. The friction time should not exceed 3 seconds.
- Bonding operation suggestions: Use Φ0.025mm (1mil) gold wire for both ball and wedge bonding. Thermosonic bonding temperature is 150 °C. The pressure of the wedge bonding knife is 40~50gf for ball bonding and 18~22gf for wedge bonding. Use the smallest possible ultrasonic energy. The bonding starts at the pressure point on the chip and ends at the package (or substrate).