

GaAs MMIC Power Amplifier Chip, 17-50GHz

Performance characteristics

Frequency range: 17-50GHz Small Signal Gain: 18.5 dB

P-1dB: 23dBm Psat: 24dBm

Power supply: +5 V/ 380 mA

500hm input/output 100% on-chip testing

Chip size: 2.32 x 1.59 x 0.1mm

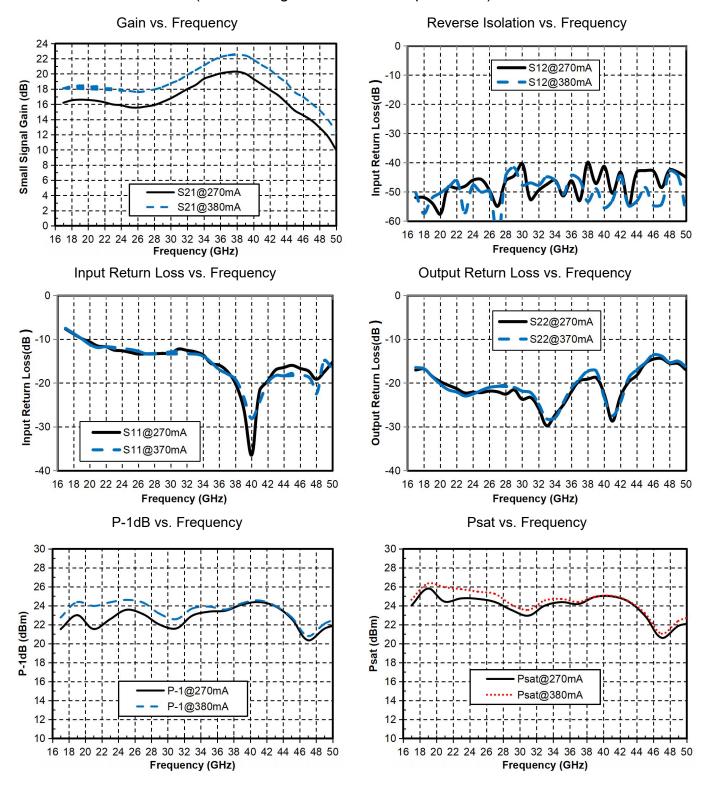
Product Introduction

GPA-1750B is a broadband amplifier chip based on GaAs technology, covering a frequency range of 17-50GHz, a small signal gain of 18.5dB, and a saturated output power of 24dBm. The chip is powered by a +5V power supply. The chip through-hole metallization process ensures good grounding, and the back side is metallized, which is suitable for eutectic sintering or conductive adhesive bonding.

Use restriction parameter ¹		
Maximum drain voltage	+7 V	
Maximum gate bias	-3V	
Maximum input power	+20dBm	
Operating temperature	-55 ~ + 85 °C	
Storage temperature	-65 ~ +150°C	

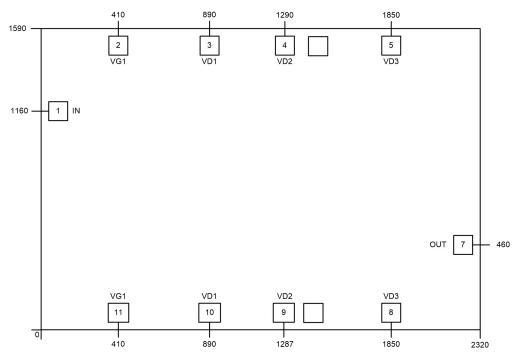
[1] Exceeding any of these maximum limits may cause permanent damage.

Electrical performance parameters (TA = +25°C , Vd = +5V)					
Index	Minimum	Typical Value	Maximum	Unit	
Frequency Range	18-50			GHz	
Small Signal Gain	-	18.5	-	dB	
Gain Flatness		± 5.0		dB	
P -1 dB		23		dBm	
Psat		24		dBm	
Input return loss	-	15	-	dB	
Output return loss	-	20	-	dB	
Quiescent Current		380		mA	


^{*} By tuning the Vg terminal voltage from -2V to 0V , 380 mA is achieved , and the Vg terminal voltage is expected to be -0.7 V.

Add: 101 cecil street #14-10, tong eng building singapore 069533 Email: info@standardcircuit.com

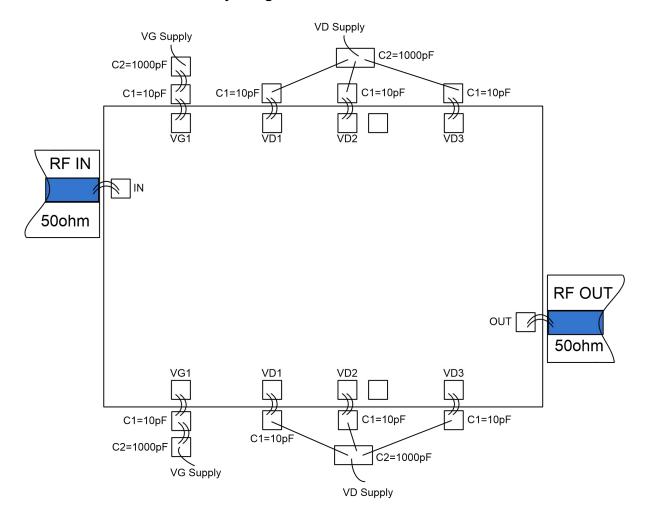
GaAs MMIC power amplifier chip, 17-50GHz


Main index test curve (the following data is based on probe test)

GaAs MMIC Power Amplifier Chip, 17-50GHz

Appearance structure ²

[2] All units in the figure are micrometers


Bonding point definition

Bonding point number	Function	Functional Description
	Symbol	
1	RF IN	RF signal input terminal, no DC blocking capacitor
	KF IIN	required
2	RF OUT	RF signal output terminal, no DC blocking capacitor
		required
2.11 VG1	VC1	Amplifier drain bias, external 10pF , 1000pF bypass
	capacitor required	
3, 4, 5, 8, 9, 10	VD1~VD3	Amplifier gate bias, external 10pF , 1000pF bypass
		capacitor required
Chip bottom	GND	needs to be in good contact with the RF and DC grounds

GaAs MMIC Power Amplifier Chip, 17-50GHz

Recommended assembly diagram

Notice

- The chip must be stored in an anti-static container and kept in a nitrogen environment.
- bare die surface using wet chemical methods .
- Please strictly follow the ESD protection requirements to avoid static damage to the bare chip.
- General operation: Please use precision pointed tweezers to pick up bare chips. Avoid touching the chip surface with tools or fingers during operation.
- Rack mounting operation suggestions: Bare chip mounting can be done by AuSn solder eutectic sintering
 or conductive adhesive bonding. The mounting surface must be clean and flat.
- Sintering process: It is recommended to use AuSn solder sheets with a gold -tin ratio of 80/20. The working surface temperature reaches 255 °C and the tool (vacuum chuck) temperature reaches 265 °C. When the high-temperature mixed gas (nitrogen-hydrogen ratio of 90/10) is blown to the chip, the temperature at the top of the tool should be raised to 290 °C. Do not let the chip exceed 320 °C for more

than 20 seconds. The friction time should not exceed 3 seconds.

- Bonding process: The amount of conductive glue dispensed should be as small as possible. After the chip is placed in the installation position, the conductive glue can be vaguely seen around it . For curing conditions, please follow the information provided by the conductive glue manufacturer.
- Bonding operation suggestions: Use Φ0.025mm (1mil) gold wire for both ball and wedge bonding . Thermosonic bonding temperature is 150 °C . The pressure of the wedge bonding knife is 40~50gf for ball bonding and 18~22gf for wedge bonding. Use the smallest possible ultrasonic energy. The bonding starts at the pressure point on the chip and ends at the package (or substrate).

Add: 101 cecil street #14-10, tong eng building singapore 069533 Web: www.standardcircuit.com Tel: +65 82613258

Email: info@standardcircuit.com