

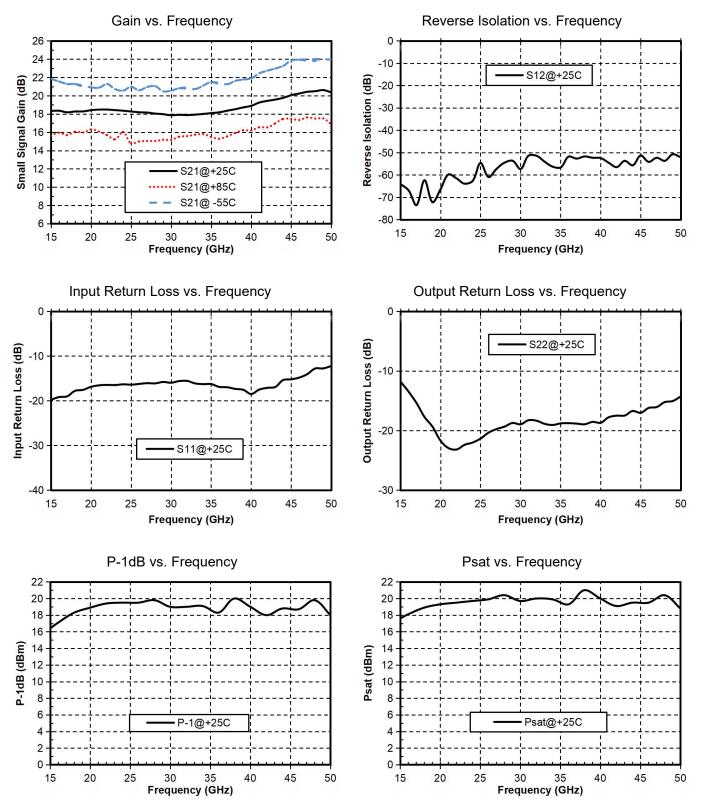
Performance characteristics

Frequency range: 15-50GHz Small Signal Gain: 18.5 dB P-1dB: 18.5 dBm Psat: 19.5 dBm Power supply: +5V@190mA 50Ohm input/output 100% on-chp testing Chip size : 1.9 x 1.25 x 0.1mm

Functional Block Diagram

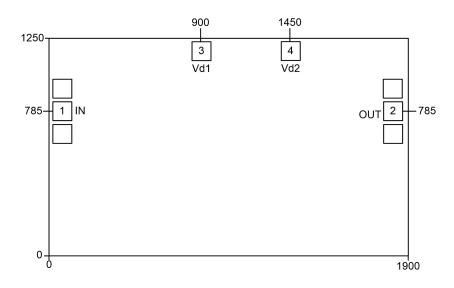
Product Introduction

GPA -1550B is a broadband high-gain, high-efficiency, high- power amplifier chip based on GaAs technology, covering a frequency range of 15~50GHz, a small signal gain of 18.5dB, and a P-1 output power of 18.5dBm. The chip via metallization process ensures good grounding, and the back side is metallized, which is suitable for eutectic sintering process.


Use restriction parameter ¹		
Maximum drain voltage	+7 V	
Maximum input power	+20 dBm	
Operating temperature	-55 ~ +85°C	
Storage temperature	-65 ~ +150°C	

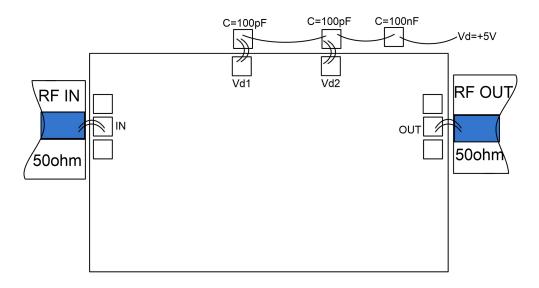
[1] Exceeding any of these maximum limits may cause permanent damage.

Electrical parameters (Ta=+25°C, Vd= +5 V , Ids= 190 mA)				
Index	Minimum	Typical Value	Maximum	Unit
Frequency Range	15-50			GHz
Small Signal Gain	17.5	18.5	20.5	dB
Gain Flatness	± 1.5			dB
P-1dB	16.6	18.5	20	dBm
Psat	17.5	19.5	twenty one	dBm
Input return loss	12	16	-	dB
Output return loss	11.5	18	-	dB



Main index test curve

Appearance structure ²



[2] All units in the figure are micrometers

Bonding point definition			
Bonding point number	Function Symbol	Functional Description	
1	RF IN	The signal input terminal is connected to a 50 ohm circuit, and no DC blocking capacitor is required	
2	RF OUT	The signal output terminal is connected to a 50 ohm circuit, and no DC blocking capacitor is required	
3.4	VD1 , VD2	Amplifier drain bias, external 100 pF, 100nF bypass capacitor required	
Chip bottom	GND	The bottom of the chip needs to be in good contact with the RF and DC grounds	

Recommended assembly diagram

Notice

- The chip must be stored in an anti-static container and kept in a nitrogen environment.
- Do not attempt to clean the bare die surface using wet chemical methods.
- Please strictly follow the ESD protection requirements to avoid static damage to the bare chip.
- General operation: Please use precision pointed tweezers to pick up bare chips. Avoid touching the chip surface with tools or fingers during operation.
- Rack mounting operation suggestions: AuSn solder eutectic sintering process can be used for bare chip mounting. The mounting surface must be clean and flat.
- Sintering process: It is recommended to use AuSn solder sheets with a gold-tin ratio of 80/20. The working surface temperature reaches 255 °C and the tool (vacuum chuck) temperature reaches 265 °C. When the high-temperature mixed gas (nitrogen-hydrogen ratio of 90/10) is blown to the chip, the temperature at the top of the tool should be raised to 290 °C. Do not let the chip exceed 320 °C for more than 20 seconds. The friction time should not exceed 3 seconds.
- Bonding operation suggestions: Use Φ0.025mm (1mil) gold wire for both ball and wedge bonding. Thermosonic bonding temperature is 150 °C. The pressure of the wedge bonding knife is 40~50gf for ball bonding and 18~22gf for wedge bonding. Use the smallest possible ultrasonic energy. The bonding starts at the pressure point on the chip and ends at the package (or substrate).