

GaAs MMIC Power Amplifier Chip, 15-17GHz

Performance characteristics

Frequency range: 15-17GHz Small Signal Gain: 37 dB

Power gain: 34dB P-1dB: 34 dBm Psat: 35 dBm PAE: 38%~40%

Power supply: 7 V/ 660 mA

500hm input/output 100% on-chip testing

Chip size: 3.3 x 1.6 x 0.1mm

Product Introduction:

GPA-1517-35 is a high-gain, high-efficiency, high- power amplifier chip based on GaAs technology, covering a frequency range of 15~17GHz, with a small signal gain of 37dB, a power gain of 34dB, a saturated output power of 35dBm, and an additional efficiency of 38%~40%. The chip via metallization process ensures good grounding, and the back side is metallized, which is suitable for eutectic sintering process.

Use restriction parameter ¹				
Maximum drain voltage	+8 V			
Maximum gate bias	- 3 V			
Maximum input power	+10 dBm			
Operating temperature	-55 ~ +85°C			
Storage temperature	-65 ~ +150°C			

[1] Exceeding any of these maximum limits may cause permanent damage.

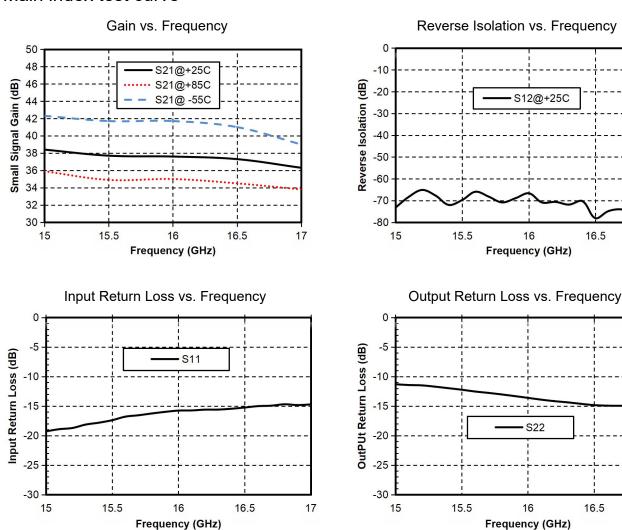
Electrical parameters (Ta=+25°C, Vd = 7V , Ids= 660mA)					
index	Minimum	Typical Value	Maximum	unit	
Frequency Range	15 - 17			GHz	
Small Signal Gain	36.5	37	37.5	dB	
Gain Flatness	± 0.5			dB	
P-1dB	-	34	34.5	dBm	
Psat	-	35	-	dBm	
Input return loss	-	15	-	dB	
Output return loss	-	13	-	dB	

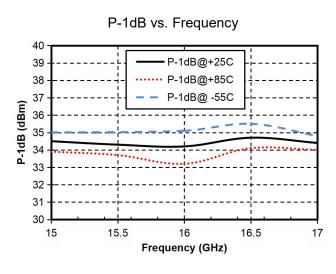
^{*} By adjusting the Vg terminal voltage from -2V to 0V , the lds reaches 660 mA . The recommended gate voltage is -0.9V.

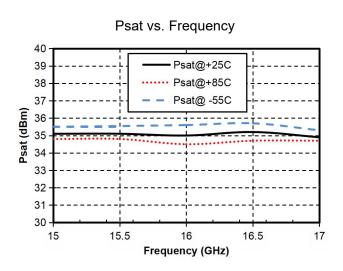
Add: 101 cecil street #14-10, tong eng building singapore 069533 Email: info@standardcircuit.com

Web: www.standardcircuit.com Tel: +65 82613258

16.5

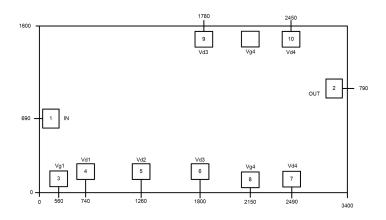

17


17



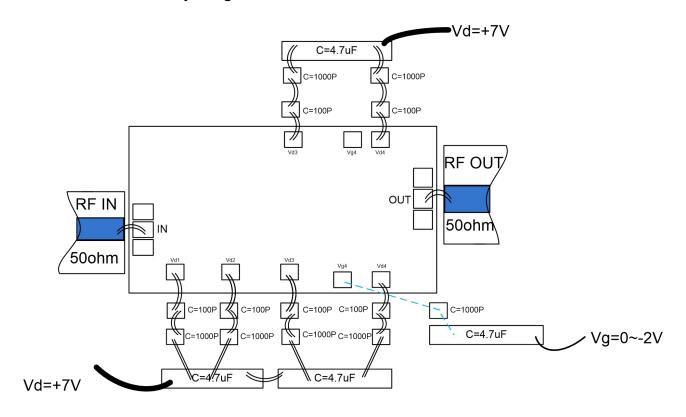
GaAs MMIC Power Amplifier Chip, 15-17GHz

Main index test curve



GaAs MMIC Power Amplifier Chip, 15-17GHz

Appearance structure ²


[2] All units in the figure are micrometers

Bonding point definition					
Bonding point number	Function Symbol	Functional Description	Equivalent Circuit		
1	RF IN	The signal input terminal is connected to a 50 ohm circuit, and no DC blocking capacitor is required	RF IN		
2	RF OUT	The signal output terminal is connected to a 50 ohm circuit, and no DC blocking capacitor is required.	RFOUT		
4, 5, 6, 7, 9, 10	Vd 1~4	Amplifier drain bias, external 100pF, 1000pF, 4.7uF bypass capacitors are required.	Vdd		
8	Vg4	Amplifier gate bias, external 100pF , 1000pF , 4.7uF bypass capacitors are required.	v ₉		
Chip bottom	GND	needs to be in good contact with the RF and DC grounds.	GND =		

GaAs MMIC Power Amplifier Chip, 15-17GHz

Recommended assembly diagram

Notice

- The chip must be stored in an anti-static container and kept in a nitrogen environment.
- bare die surface using wet chemical methods .
- Please strictly follow the ESD protection requirements to avoid static damage to the bare chip.
- General operation: Please use precision pointed tweezers to pick up bare chips. Avoid touching the chip surface with tools or fingers during operation.
- Rack mounting operation suggestions: AuSn solder eutectic sintering process can be used for bare chip
 mounting. The mounting surface must be clean and flat.
- Sintering process: It is recommended to use AuSn solder sheets with a gold -tin ratio of 80/20. The working surface temperature reaches 255 °C and the tool (vacuum chuck) temperature reaches 265 °C. When the high-temperature mixed gas (nitrogen-hydrogen ratio of 90/10) is blown to the chip, the temperature at the top of the tool should be raised to 290 °C. Do not let the chip exceed 320 °C for more than 20 seconds. The friction time should not exceed 3 seconds.
- Bonding operation suggestions: Use Φ0.025mm (1mil) gold wire for both ball and wedge bonding. Thermosonic bonding temperature is 150 °C. The pressure of the wedge bonding knife is 40~50gf for ball bonding and 18~22gf for wedge bonding. Use the smallest possible ultrasonic energy. The bonding starts at the pressure point on the chip and ends at the package (or substrate).