

Performance characteristics

Frequency range: 12-19GHz Small Signal Gain: 28.5 dB

P-1dB: 30.5 dBm Psat: 31.5 dBm PAE: 36%

OIP3: 36dBm@ Pin/Tone = -10dBm

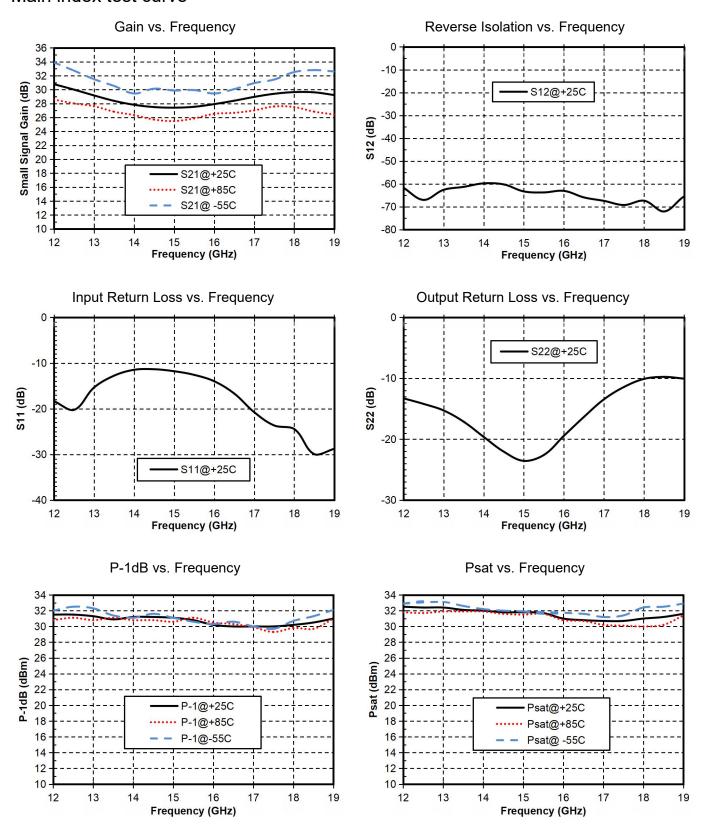
Power supply: 7 V/ 400m A

50Ohm input/output 100% on-chip testing

Chip size: 2.4 x 1.2 x 0.1mm

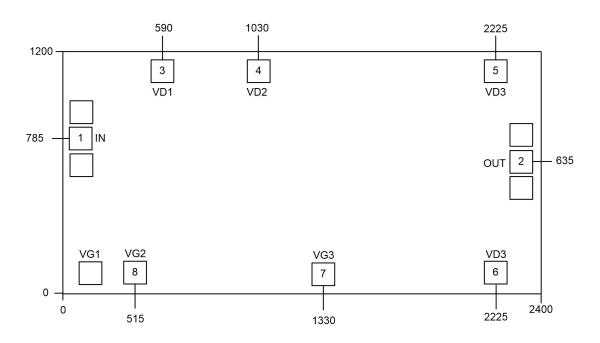
Product Introduction

GPA -1219A is a broadband high-gain, high-efficiency, high- power amplifier chip based on GaAs technology, covering a frequency range of 12~19GHz, a small signal gain of 28.5dB, a P-1 output power of 30.5dBm, and an additional efficiency of 36%. The chip via metallization process ensures good grounding, and the back side is metallized for eutectic sintering process.


Use restriction parameter ¹				
Maximum drain voltage	+8 V			
Maximum gate bias	- 3 V			
Maximum input power	+10 dBm			
Operating temperature	-55 ~ +85°C			
Storage temperature	-65 ~ +150°C			

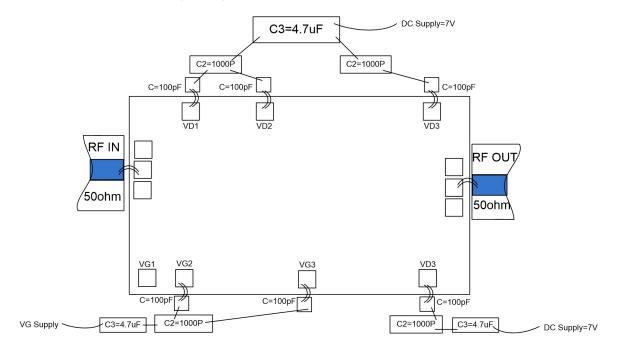
[1] Exceeding any of these maximum limits may cause permanent damage.

Electrical parameters (Ta=+25°C, Vd= 7 V, Ids= 400 mA)						
index	Minimum	Typical Value	Maximum	unit		
Frequency Range	12 - 19			GHz		
Small Signal Gain	27.5	28.5	30.5	dB		
Gain Flatness	± 1.5			dB		
P-1dB	30	30.5	-	dBm		
Psat	30.5	31.5	-	dBm		
Input return loss	-	18	-	dB		
Output return loss	-	15	-	dB		
* By tuning the Vg termin	nal voltage -2V~0V , the	recommended gate volt	age is -0.9V.			



Main index test curve

Appearance structure ²



[2] All units in the figure are micrometers

Bonding point definition					
Bonding point	Function	Functional Description	Equivalent Circuit		
number	Symbol				
		The signal input terminal is connected to a 50			
1	RF IN	ohm circuit, and no DC blocking capacitor is	RF IN		
		required.			
		The signal output terminal is connected to a			
2	RF OUT	50 ohm circuit, and no DC blocking capacitor	RF OUT		
		is required.			
		Amplifier drain bias, external 100pF ,	Vdd		
3, 4, 5, 6	V D1~3	1000pF , 4.7uF bypass capacitors are			
		required.	<u>_</u>		
7, 8	VG	Amplifier gate bias, external 100pF , 1000pF ,	v _g O—···-		
1,0	7, 8 VG	4.7uF bypass capacitors are required.	=		
		The bottom of the chip needs to be in good	GND		
Chip bottom	GND	contact with the RF and DC grounds.			

Recommended assembly diagram

Notice

- The chip must be stored in an anti-static container and kept in a nitrogen environment.
- Do not attempt to clean the bare die surface using wet chemical methods.
- Please strictly follow the ESD protection requirements to avoid static damage to the bare chip.
- General operation: Please use precision pointed tweezers to pick up bare chips. Avoid touching the chip surface with tools or fingers during operation.
- Rack mounting operation suggestions: AuSn solder eutectic sintering process can be used for bare chip
 mounting. The mounting surface must be clean and flat.
- Sintering process: It is recommended to use AuSn solder sheets with a gold-tin ratio of 80/20. The working surface temperature reaches 255 °C and the tool (vacuum chuck) temperature reaches 265 °C. When the high-temperature mixed gas (nitrogen-hydrogen ratio of 90/10) is blown to the chip, the temperature at the top of the tool should be raised to 290 °C. Do not let the chip exceed 320 °C for more than 20 seconds. The friction time should not exceed 3 seconds.
- Bonding operation suggestions: Use Φ0.025mm (1mil) gold wire for both ball and wedge bonding. Thermosonic bonding temperature is 150 °C. The pressure of the wedge bonding knife is 40~50gf for ball bonding and 18~22gf for wedge bonding. Use the smallest possible ultrasonic energy. The bonding starts at the pressure point on the chip and ends at the package (or substrate).