

Performance characteristics

Frequency range: 12-16GHz Small Signal Gain: 26 dB

P-1dB: 34.5 dBm Psat: 35.5 dBm

OIP3: 40.5dBm@14GHz Power supply: 7 V @1120 mA

500hm input/output 100% on-chip testing

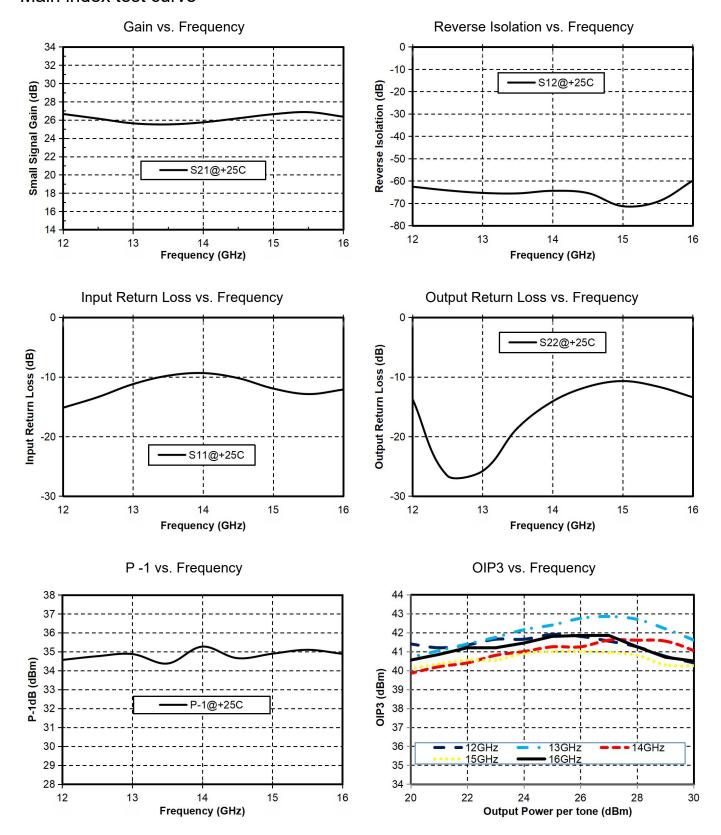
Chip size: 3.06 x 2.0 x 0.1mm

Product Introduction

GPA -1216D is a broadband high-gain, high-linearity, high- power amplifier chip based on GaAs technology, covering a frequency range of 12~16GHz, a small signal gain of 26dB, and a Psat output power of 35.5dBm. The chip via metallization process ensures good grounding, and the back side is metallized, which is suitable for eutectic sintering process.

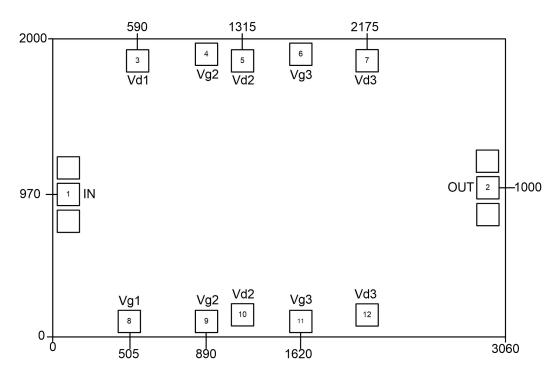
Use restriction parameter ¹		
Maximum drain voltage	+9 V	
Maximum gate bias	- 3 V	
Maximum input power	+25 dBm	
Operating temperature	-55 ~ +85°C	
Storage temperature	-65 ~ +150°C	

[1] Exceeding any of these maximum limits may cause permanent damage.


Electrical parameters (Ta=+25°C, Vd= +7 V, Vg=-1.0V, Ids= 1120 mA)				
index	Minimum	Typical Value	Maximum	unit
Frequency Range		12-16		GHz
Small Signal Gain	25.5	26	26.5	dB
Gain Flatness		± 0.5		dB
P-1dB	-	34.5	-	dBm
Psat	-	35.5	-	dBm
OIP3@14GHz		40.5		dBm
Input return loss	9	11	-	dB
Output return loss	10.5	16	-	dB
Quiescent Current		1120		mA
* By tuning the Vg termi	nal voltage -2V~0V , th	ne recommended gate volt	age is -1.0V.	

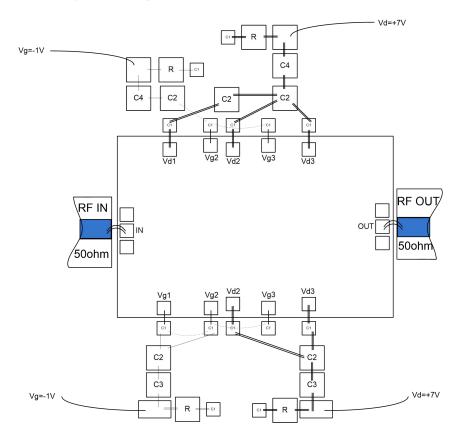
Add: 101 cecil street #14-10, tong eng building singapore 069533 Email: info@standardcircuit.com

Web: www.standardcircuit.com Tel: +65 82613258



Main index test curve

Appearance structure ²



[2] All units in the figure are micrometers

Bonding point definition			
Bonding point	Function	Functional Description	
number	Symbol		
1 RF IN	DE IN	The signal input terminal is connected to a 50 ohm circuit, and no	
	KF IN	DC blocking capacitor is required.	
2 RF OU	DE OUT	The signal output terminal is connected to a 50 ohm circuit, and no	
	RF OUT	DC blocking capacitor is required.	
3, 5, 7, 10, 12 V D1~4	V D1~4	Amplifier drain bias, external 50pF , 1000pF , 0.01uF, 4.7uF bypass	
	V D1~4	capacitors are required.	
4, 6, 8, 9, 11 V	VG1~2	Amplifier gate bias, external 50pF , 1000pF , 0.01uF, 4.7uF bypass	
	VG1~2	capacitors are required.	
Chip bottom GND	CND	The bottom of the chip needs to be in good contact with the RF and	
	GND	DC grounds.	

Recommended assembly drawing

raw material	Capacitance, inductance, resistance
C1	50pF
C 2	1000pF
C 3	0.01uF
R	10 Ω

Notice

- The chip must be stored in an anti-static container and kept in a nitrogen environment.
- Do not attempt to clean the bare die surface using wet chemical methods.
- Please strictly follow the ESD protection requirements to avoid static damage to the bare chip.
- General operation: Please use precision pointed tweezers to pick up bare chips. Avoid touching the chip surface with tools or fingers during operation.
- Rack mounting operation suggestions: AuSn solder eutectic sintering process can be used for bare chip
 mounting. The mounting surface must be clean and flat.
- Sintering process: It is recommended to use AuSn solder sheets with a gold-tin ratio of 80/20. The working surface temperature reaches 255 °C and the tool (vacuum chuck) temperature reaches 265 °C. When the high-temperature mixed gas (nitrogen-hydrogen ratio of 90/10) is blown to the chip, the temperature at the top of the tool should be raised to 290 °C. Do not let the chip exceed 320 °C for more than 20 seconds. The friction time should not exceed 3 seconds.

Bonding operation suggestions: Use Φ0.025mm (1mil) gold wire for both ball and wedge bonding. Thermosonic bonding temperature is 150 °C. The pressure of the wedge bonding knife is 40~50gf for ball bonding and 18~22gf for wedge bonding. Use the smallest possible ultrasonic energy. The bonding starts at the pressure point on the chip and ends at the package (or substrate).

Add: 101 cecil street #14-10, tong eng building singapore 069533 Web: www.standardcircuit.com Tel: +65 82613258