

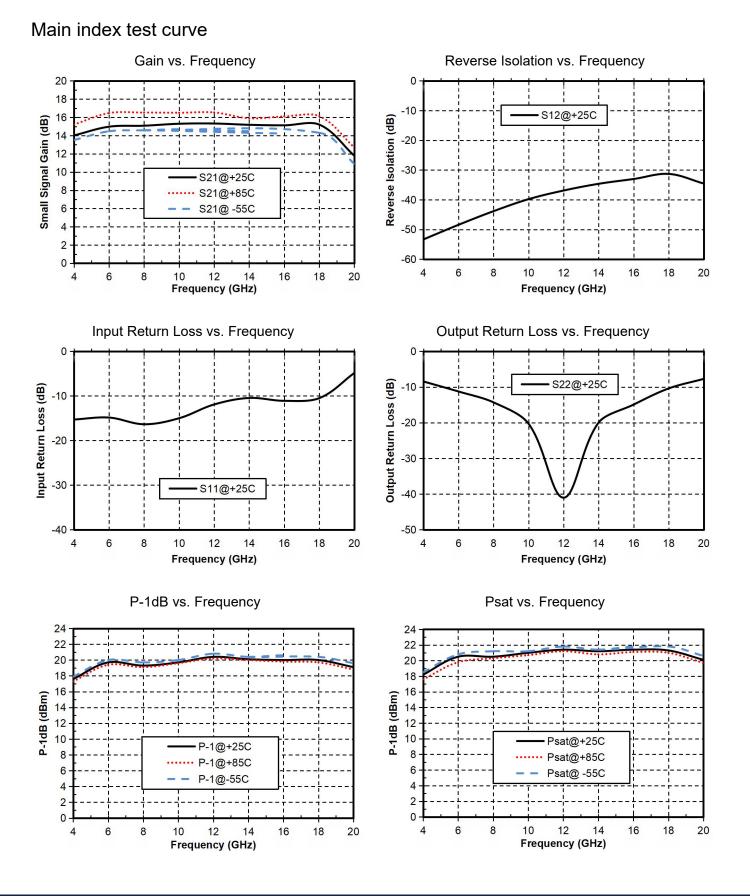

## Performance characteristics

Frequency range: 6-18 GHz Small Signal Gain: 15 dB Gain flatness: ± 0.6 dB P-1dB: 19.5 dBm Psat: 20.5 Bm Power supply: +5 V/ 110 mA 500hm input/output 100% on-chip testing Chip size : 1.05 x 1.025 x 0.1mm

## Functional Block Diagram



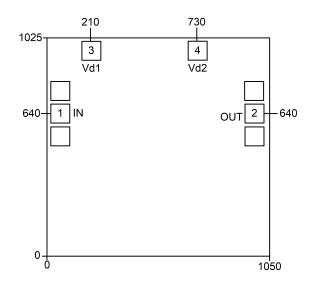
## **Product Introduction**


GPA-0620B is a broadband amplifier chip based on GaAs technology, covering a frequency range of 6~18GHz, with a small signal gain of 15dB and a P-1 output power of 19.5 dBm. The chip is powered by a single +5V power supply. The chip through-hole metallization process ensures good grounding, and the back side is metallized, which is suitable for eutectic sintering or conductive adhesive bonding process.

| Use restriction parameter <sup>1</sup> |               |  |  |  |
|----------------------------------------|---------------|--|--|--|
| Maximum drain voltage                  | +7 V          |  |  |  |
| Maximum input power                    | +20dBm        |  |  |  |
| Operating temperature                  | -55 ~ + 85 °C |  |  |  |
| Storage temperature                    | -65 ~ +150°C  |  |  |  |

[1] Exceeding any of these maximum limits may cause permanent damage.

| Electrical performance parameters ( TA $_{=}$ +25°C , Vd = +5V ) |         |               |         |      |  |
|------------------------------------------------------------------|---------|---------------|---------|------|--|
| Index                                                            | Minimum | Typical Value | Maximum | Unit |  |
| Frequency Range                                                  |         | 6-18          |         | GHz  |  |
| Small Signal Gain                                                | -       | 15            | -       | dB   |  |
| Gain Flatness                                                    |         | ± 0.3         |         | dB   |  |
| P -1 dB                                                          | -       | 19.5          | -       | dBm  |  |
| Psat                                                             | -       | 20.5          | -       | dBm  |  |
| Input return loss                                                | -       | 13            | -       | dB   |  |
| Output return loss                                               | -       | 17            | -       | dB   |  |
| Quiescent Current                                                |         | 110           |         | mA   |  |

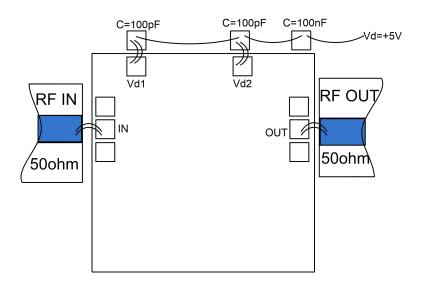





#### Add: 101 cecil street #14-10, tong eng building singapore 069533 Email: info@standardcircuit.com



# Appearance structure <sup>2</sup>




[ 2 ] All units in the figure are micrometers

| Bonding point definition |                    |                                                                          |                    |  |  |
|--------------------------|--------------------|--------------------------------------------------------------------------|--------------------|--|--|
| Bonding point<br>number  | Function<br>Symbol | Functional Description                                                   | Equivalent Circuit |  |  |
| 1                        | RF IN              | RF signal input terminal, no DC blocking capacitor required              |                    |  |  |
| 2                        | RF OUT             | RF signal output terminal, no DC blocking capacitor required             |                    |  |  |
| 3.4                      | Vd                 | Amplifier drain bias, external 100pF,<br>100nF bypass capacitor required | C vee<br>−<br>↓    |  |  |
| Chip bottom              | GND                | needs to be in good contact with the RF and DC grounds                   |                    |  |  |



## Recommended assembly diagram



### Notice

- The chip must be stored in an anti-static container and kept in a nitrogen environment.
- bare die surface using wet chemical methods .
- Please strictly follow the ESD protection requirements to avoid static damage to the bare chip.
- General operation: Please use precision pointed tweezers to pick up bare chips. Avoid touching the chip surface with tools or fingers during operation.
- Rack mounting operation suggestions: Bare chip mounting can be done by AuSn solder eutectic sintering or conductive adhesive bonding. The mounting surface must be clean and flat.
- Sintering process: It is recommended to use AuSn solder sheets with a gold -tin ratio of 80/20. The working surface temperature reaches 255 °C and the tool (vacuum chuck) temperature reaches 265 °C. When the high-temperature mixed gas (nitrogen-hydrogen ratio of 90/10) is blown to the chip, the temperature at the top of the tool should be raised to 290 °C. Do not let the chip exceed 320 °C for more than 20 seconds. The friction time should not exceed 3 seconds.
- Bonding process: The amount of conductive glue dispensed should be as small as possible. After the chip is placed in the installation position, the conductive glue can be vaguely seen around it . For curing conditions, please follow the information provided by the conductive glue manufacturer.
- Bonding operation suggestions: Use Φ0.025mm (1mil) gold wire for both ball and wedge bonding. Thermosonic bonding temperature is 150 °C. The pressure of the wedge bonding knife is 40~50gf for ball bonding and 18~22gf for wedge bonding. Use the smallest possible ultrasonic energy. The bonding starts at the pressure point on the chip and ends at the package (or substrate).