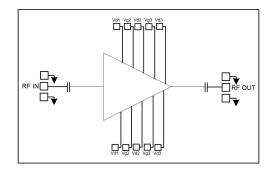


Performance characteristics

Frequency range: 6-18GHz


Small signal gain: 26 dB@ +5V, 25dB@+6V P-1dB: 30.5dBm@+5V , 32dBm@+6V Psat : 31dBm @ +5V, 32.5dBm@+6V

Power supply: +5V@1100mA, + 6V @ 1100mA

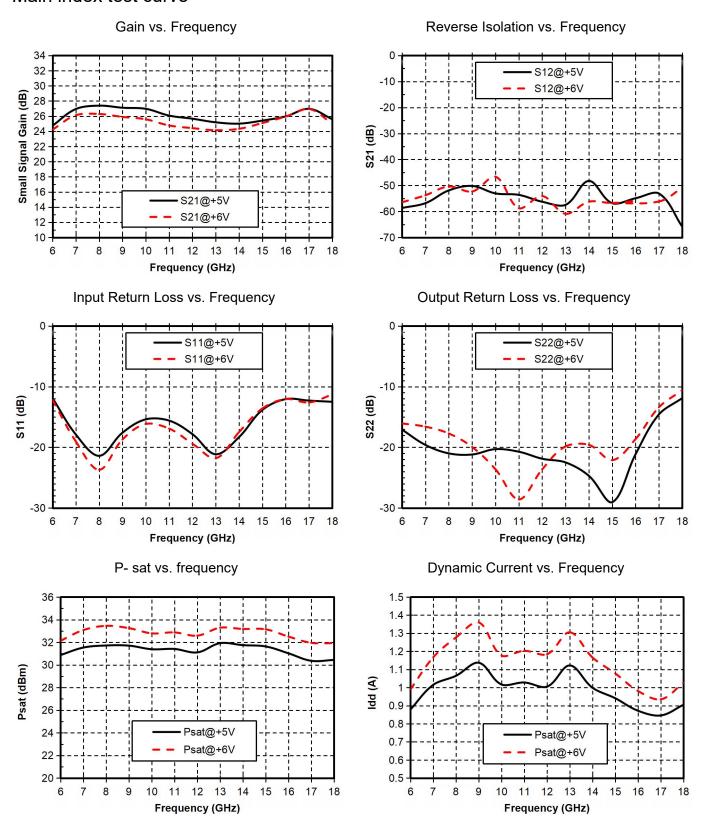
500hm input/output 100% on-chip testing

Chip size: 3.3 x 2.4 x 0.1mm

Functional Block Diagram

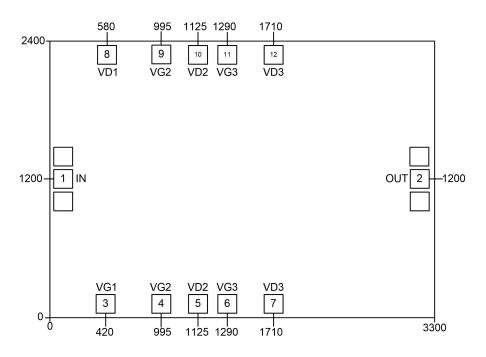
Product Introduction

GPA -0618E is a broadband high-gain, high-efficiency, high- power amplifier chip based on GaAs technology, covering a frequency range of 6~18GHz, with a small signal gain of 26 dB and a Psat output power of 31 dBm when operating at +5V; and a small signal gain of 25dB and a Psat output power of 32.5dBm when operating at +6V. The chip's via metallization process ensures good grounding, and the back side is metallized, which is suitable for eutectic sintering process.


Use restriction parameter ¹		
Maximum drain voltage	+9 V	
Maximum gate bias	- 3 V	
Maximum input power	+25 dBm	
Operating temperature	-55 ~ +85°C	
Storage temperature	-65 ~ +150°C	

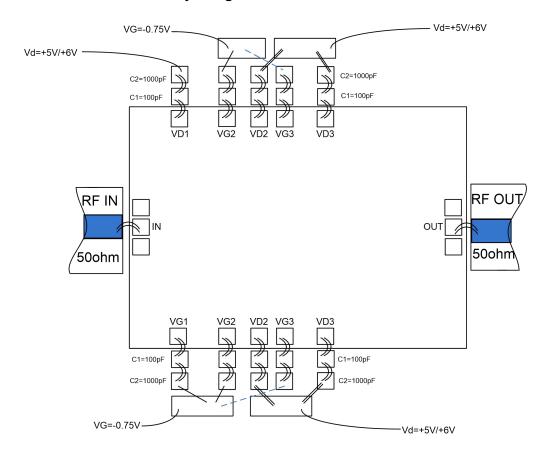
[1] Exceeding any of these maximum limits may cause permanent damage.

Electrical parameters (Ta=+25°C, Vd= +5 V, Vg=-0.75V, Ids= 1100 mA)					
index	Minimum	Typical Value	Maximum	unit	
Frequency Range	,	6-18		GHz	
Small Signal Gain	-	26	-	dB	
Gain Flatness		± 1.3		dB	
P-1dB	-	30.5	-	dBm	
Psat	-	31	-	dBm	
Input return loss	-	15	-	dB	
Output return loss	-	20	-	dB	
* By tuning the Va term	inal voltage -2V~0V	the recommended gate vo	Itage is -0.75V.	•	



Main index test curve

Appearance structure ²



[2] The units in the figure are all micrometers (dimensional tolerance: ± 100 um.)

Bonding point definition			
Bonding point	Function	Functional Decembring	
number	Symbol	Functional Description	
1	RF IN	The signal input terminal is connected to a 50 ohm circuit, and no DC	
		blocking capacitor is required.	
2	RF OUT	The signal output terminal is connected to a 50 ohm circuit, and no DC	
		blocking capacitor is required.	
5, 7, 8, 10, 12 V D	V D1~3	Amplifier drain bias, external 100pF , 1000pF bypass capacitors are	
	V D1~3	required.	
3, 4, 6, 9, 11 VC	VG1~3	Amplifier gate bias, external 100pF , 1000pF bypass capacitors are	
	VGT~3	required.	
Chip bottom	GND	The bottom of the chip needs to be in good contact with the RF and DC	
	GIND	grounds.	

Recommended assembly diagram

Notice

- The chip must be stored in an anti-static container and kept in a nitrogen environment.
- Do not attempt to clean the bare die surface using wet chemical methods.
- Please strictly follow the ESD protection requirements to avoid static damage to the bare chip.
- General operation: Please use precision pointed tweezers to pick up bare chips. Avoid touching the chip surface with tools or fingers during operation.
- Rack mounting operation suggestions: AuSn solder eutectic sintering process can be used for bare chip mounting. The mounting surface must be clean and flat.
- Sintering process: It is recommended to use AuSn solder sheets with a gold-tin ratio of 80/20. The working surface temperature reaches 255 °C and the tool (vacuum chuck) temperature reaches 265 °C. When the high-temperature mixed gas (nitrogen-hydrogen ratio of 90/10) is blown to the chip, the temperature at the top of the tool should be raised to 290 °C. Do not let the chip exceed 320 °C for more than 20 seconds. The friction time should not exceed 3 seconds.
- Bonding operation suggestions: Use Φ0.025mm (1mil) gold wire for both ball and wedge bonding. Thermosonic bonding temperature is 150 °C. The pressure of the wedge bonding knife is 40~50gf for ball bonding and 18~22gf for wedge bonding. Use the smallest possible ultrasonic energy. The bonding starts at the pressure point on the chip and ends at the package (or substrate).