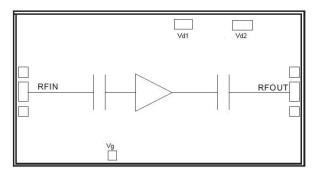


Performance characteristics

Frequency range: 2-6GHz Small Signal Gain: 20 dB


P-1dB: 31.5 dBm Psat: 32d Bm

Power supply: +8V@365mA

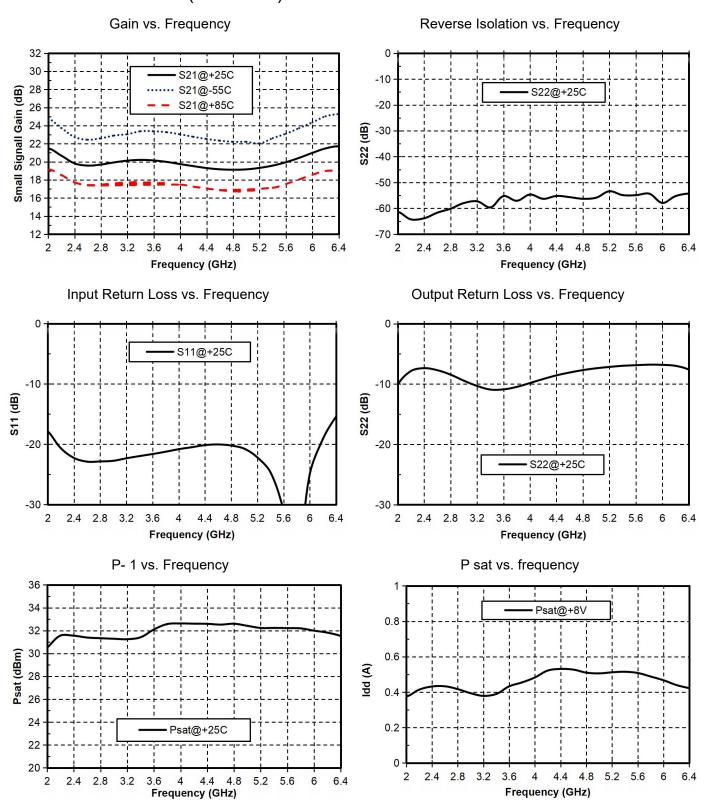
500hm input/output 100% on-chip testing

Chip size: 2.53 x 1.84 x 0.1mm

Functional Block Diagram

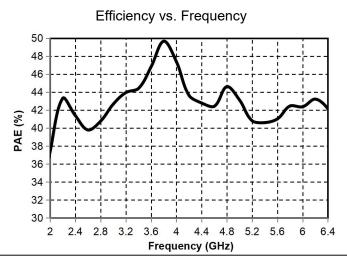
Product Introduction

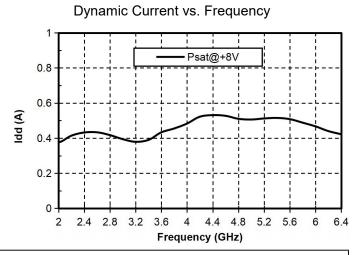
GPA -0206B is a broadband high-gain, high-efficiency, high- power amplifier chip based on GaAs technology, covering a frequency range of $2\sim 6$ GHz, with a small signal gain of 20 dB and a Psat output power of 32dBm when operating at +8V. The chip's via metallization process ensures good grounding, and the back side is metallized for eutectic sintering. The chip also supports + 5V operation.

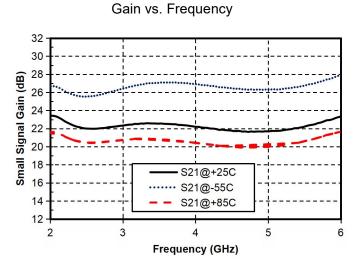

Use restriction parameter ¹		
Maximum drain voltage	+10 V	
Maximum gate bias	- 3 V	
Maximum input power	+25 dBm	
Operating temperature	-55 ~ +85°C	
Storage temperature	-65 ~ +150°C	

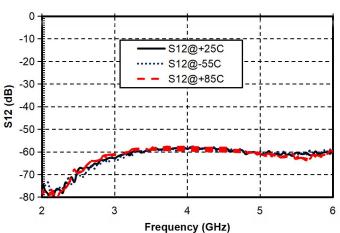
[1] Exceeding any of these maximum limits may cause permanent damage.

			Electrical parameters (Ta=+25°C, Vd = +8 V, Vg=-0.65V, Ids= 365 mA)				
Minimum	Typical Value	Maximum	unit				
2-6		GHz					
-	20	-	dB				
± 1.1		dB					
-	31.5	-	dBm				
-	32	-	dBm				
	40		%				
-	22	-	dB				
-	8.5	-	dB				
	- - - - -	- 20 ± 1.1 - 31.5 - 32 40 - 22 - 8.5	- 20 - ± 1.1 - 31.5 - 32 - 40 - 22 -				



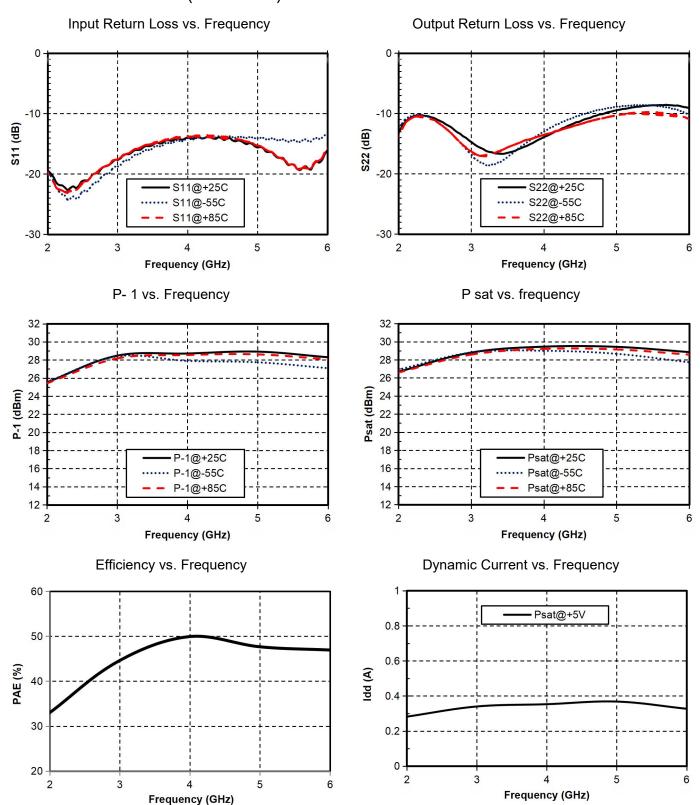

Main index test curve (Vd = +8V)


Main index test curve (Vd = +8V)

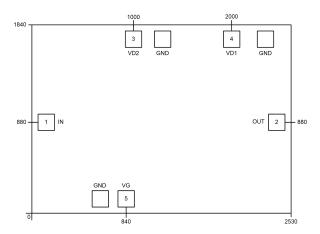


index	Minimum	Typical Value	Maximum	unit
Frequency Range		2-6		GHz
Small Signal Gain	-	twenty two	-	dB
Gain Flatness	± 0.9		dB	
P-1dB	-	27.5	-	dBm
Psat	-	28.5	-	dBm
PE		44		%
Input return loss	-	16	-	dB
Output return loss	-	11	-	dB

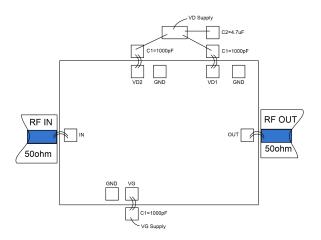
Main index test curve (Vd = +5V)



Reverse Isolation vs. Frequency



Main index test curve (Vd = +5V)


Appearance structure ²

[2] The units in the figure are all micrometers (dimensional tolerance: $\pm 100 \,\mu$ m.)

Bonding point definition			
Bonding point	Function	Functional Description	
number	Symbol	Functional Description	
1	RF IN	The signal input terminal is connected to a 50 ohm circuit, and no DC	
		blocking capacitor is required	
2	RF OUT	The signal output terminal is connected to a 50 ohm circuit, and no DC	
		blocking capacitor is required	
3.4	V D1~2	Amplifier drain bias, external 1000 pF , 4.7uF bypass capacitors are	
	V D1~2	required	
5	VG	Amplifier gate bias, requires external 100 0 pF bypass capacitor	
Chip bottom	GND	needs to be in good contact with the RF and DC grounds	

Recommended assembly diagram

