

GaAs MMIC Power Amplifier Chip, 0.8-2GHz

Performance characteristics

Frequency range: 0.8-2GHz Small Signal Gain: 33 dB

P-1dB: 30 dBm Psat: 30.5 dBm PAE: 39%

Power supply: +8 V / 215m A

500hm input/output 100% on-chip testing

Chip size: 2.66 x 2.16 x 0.1mm

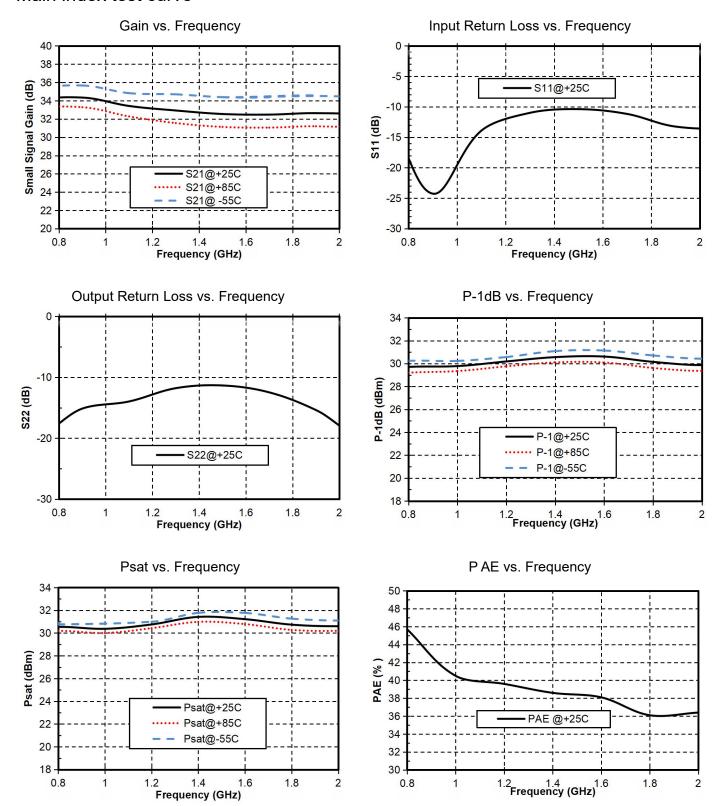
Product Introduction

GPA-008020A is a broadband high-gain, high-efficiency, high- power amplifier chip based on GaAs technology, covering a frequency range of 0.8~2.0GHz, a small signal gain of 33 dB, a P-1 output power of 30 dBm, and a saturation efficiency of 39%. The chip via metallization process ensures good grounding, and the back side is metallized for eutectic sintering process.

Use restriction parameter ¹		
Maximum drain voltage	+10 V	
Maximum gate bias	- 3 V	
Maximum input power	+20 dBm	
Operating temperature	-55 ~ +85°C	
Storage temperature	-65 ~ +150°C	

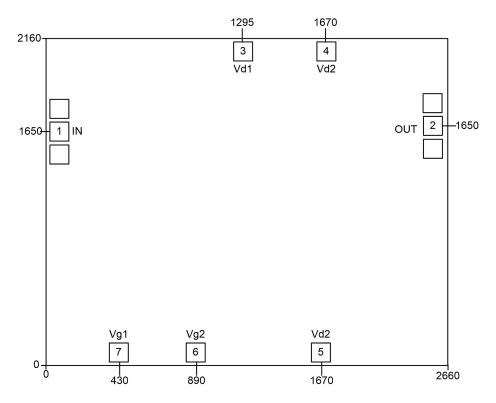
[1] Exceeding any of these maximum limits may cause permanent damage.

Electrical parameters (Ta=+25°C, Vd=+ 8 V, Ids= 215 mA)				
index	Minimum	Typical Value	Maximum	unit
Frequency Range		0.8 - 2.0		GHz
Small Signal Gain	32	33	34	dB
Gain Flatness	± 1.0		dB	
P-1dB	29	30	-	dBm
Psat	30	30.5	-	dBm
PAE	-	39	-	%
Input return loss	10	13	-	dB
Output return loss	11	14	-	dB
* By tuning the Vg terminal voltage -2V~0V , the recommended gate voltage is -0.85V.				


Add: 101 cecil street #14-10, tong eng building singapore 069533 Email: info@standardcircuit.com

Web: www.standardcircuit.com Tel: +65 82613258

GaAs MMIC Power Amplifier Chip, 0.8-2GHz

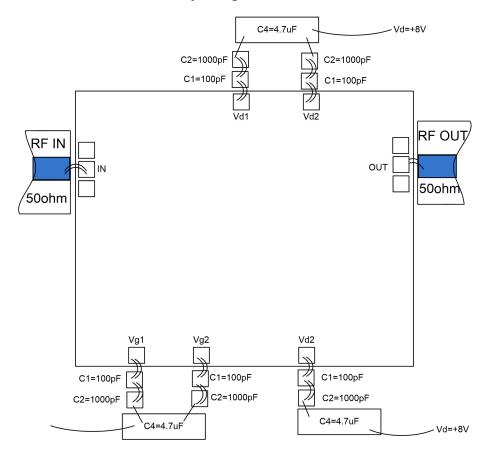

Main index test curve

GaAs MMIC Power Amplifier Chip, 0.8-2GHz

Appearance structure ²

[2] All units in the figure are micrometers

Bonding point definition			
Bonding point	Function	Functional Description	
number	Symbol	Functional Description	
1 RF IN	DE IN	The signal input terminal is connected to a 50 ohm circuit, and no DC	
	IN IN	blocking capacitor is required.	
2 RF	RF OUT	The signal output terminal is connected to a 50 ohm circuit, and no DC	
	KF OUT	blocking capacitor is required.	
3, 4, 5 V D1~2	V D1~2	Amplifier drain bias, external 100pF , 1000pF , 4.7uF bypass capacitors	
	are required.		
6, 7 VG	VC	Amplifier drain bias, external 100pF , 1000pF , 4.7uF bypass capacitors	
	are required.		
Chip bottom GN	CND	The bottom of the chip needs to be in good contact with the RF and DC	
	GND	grounds.	


GaAs MMIC Power Amplifier Chip, 0.8-2GHz

Add: 101 cecil street #14-10, tong eng building singapore 069533 Email: info@standardcircuit.com

Web: www.standardcircuit.com Tel: +65 82613258

Recommended assembly diagram

Notice

- The chip must be stored in an anti-static container and kept in a nitrogen environment.
- Do not attempt to clean the bare die surface using wet chemical methods.
- Please strictly follow the ESD protection requirements to avoid static damage to the bare chip.
- General operation: Please use precision pointed tweezers to pick up bare chips. Avoid touching the chip surface with tools or fingers during operation.
- Rack mounting operation suggestions: AuSn solder eutectic sintering process can be used for bare chip
 mounting. The mounting surface must be clean and flat.
- Sintering process: It is recommended to use AuSn solder sheets with a gold-tin ratio of 80/20. The working surface temperature reaches 255 °C and the tool (vacuum chuck) temperature reaches 265 °C. When the high-temperature mixed gas (nitrogen-hydrogen ratio of 90/10) is blown to the chip, the temperature at the top of the tool should be raised to 290 °C. Do not let the chip exceed 320 °C for more than 20 seconds. The friction time should not exceed 3 seconds.
- Bonding operation suggestions: Use Φ0.025mm (1mil) gold wire for both ball and wedge bonding. Thermosonic bonding temperature is 150 °C. The pressure of the wedge bonding knife is 40~50gf for ball bonding and 18~22gf for wedge bonding. Use the smallest possible ultrasonic energy. The bonding starts at the pressure point on the chip and ends at the package (or substrate).